
CHAPTER FIFTEEN

OVERVIEW OF
PERIPHERAL BUSES

Wher eas Chapter 8 introduced the lowest levels of hardware contr ol, this chapter
pr ovides an overview of the higher-level bus architectur es. A bus is made up of
both an electrical interface and a programming interface. In this chapter, we deal
with the programming interface.

This chapter covers a number of bus architectur es. However, the primary focus is
on the kernel functions that access PCI peripherals, because these days the PCI
bus is the most commonly used peripheral bus on desktops and bigger computers,
and the one that is best supported by the kernel. ISA is still common for electronic
hobbyists and is described later, although it is pretty much a bare-metal kind of
bus and there isn’t much to say in addition to what is covered in Chapter 8 and
Chapter 9.

The PCI Interface
Although many computer users think of PCI (Peripheral Component Interconnect)
as a way of laying out electrical wires, it is actually a complete set of specifications
defining how differ ent parts of a computer should interact.

The PCI specification covers most issues related to computer interfaces. We are not
going to cover it all here; in this section we are mainly concerned with how a PCI
driver can find its hardware and gain access to it. The probing techniques dis-
cussed in ‘‘Automatic and Manual Configuration’’ in Chapter 2, and ‘‘Autodetecting
the IRQ Number’’ in Chapter 9 can be used with PCI devices, but the specification
of fers a preferable alternative to probing.

The PCI architectur e was designed as a replacement for the ISA standard, with
thr ee main goals: to get better perfor mance when transferring data between the
computer and its peripherals, to be as platform independent as possible, and to
simplify adding and removing peripherals to the system.

470

22 June 2001 16:43

The PCI bus achieves better perfor mance by using a higher clock rate than ISA; its
clock runs at 25 or 33 MHz (its actual rate being a factor of the system clock), and
66-MHz and even 133-MHz implementations have recently been deployed as well.
Mor eover, it is equipped with a 32-bit data bus, and a 64-bit extension has been
included in the specification (although only 64-bit platforms implement it). Plat-
for m independence is often a goal in the design of a computer bus, and it’s an
especially important feature of PCI because the PC world has always been domi-
nated by processor-specific interface standards. PCI is currently used extensively
on IA-32, Alpha, PowerPC, SPARC64, and IA-64 systems, and some other platforms
as well.

What is most relevant to the driver writer, however, is the support for autodetec-
tion of interface boards. PCI devices are jumperless (unlike most older peripherals)
and are automatically configured at boot time. The device driver, then, must be
able to access configuration information in the device in order to complete initial-
ization. This happens without the need to perfor m any probing.

PCI Addressing
Each PCI peripheral is identified by a bus number, a device number, and a func-
tion number. The PCI specification permits a system to host up to 256 buses. Each
bus hosts up to 32 devices, and each device can be a multifunction board (such as
an audio device with an accompanying CD-ROM drive) with a maximum of eight
functions. Each function can thus be identified at hardware level by a 16-bit
addr ess, or key. Device drivers written for Linux, though, don’t need to deal with
those binary addresses as they use a specific data structure, called pci_dev, to
act on the devices. (We have already seen struct pci_dev, of course, in Chap-
ter 13.)

Most recent workstations feature at least two PCI buses. Plugging more than one
bus in a single system is accomplished by means of bridges, special-purpose PCI
peripherals whose task is joining two buses. The overall layout of a PCI system is
organized as a tree, where each bus is connected to an upper-layer bus up to bus
0. The CardBus PC-card system is also connected to the PCI system via bridges. A
typical PCI system is repr esented in Figure 15-1, where the various bridges are
highlighted.

The 16-bit hardware addr esses associated with PCI peripherals, although mostly
hidden in the struct pci_dev object, are still visible occasionally, especially
when lists of devices are being used. One such situation is the output of lspci (part
of the pciutils package, available with most distributions) and the layout of infor-
mation in /pr oc/pci and /pr oc/bus/pci.* When the hardware addr ess is displayed, it
can either be shown as a 16-bit value, as two values (an 8-bit bus number and an

* Please note that the discussion, as usual, is based on the 2.4 version of the kernel, rele-
gating backward compatibility issues to the end of the chapter.

The PCI Interface

471

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

PCI Bus 0 PCI Bus 1
Host Bridge PCI Bridge

ISA Bridge

CardBus Bridge

RAM CPU

Figur e 15-1. Layout of a Typical PCI System

8-bit device and function number), or as three values (bus, device, and function);
all the values are usually displayed in hexadecimal.

For example, /pr oc/bus/pci/devices uses a single 16-bit field (to ease parsing and
sorting), while /pr oc/bus/busnumber splits the address into three fields. The fol-
lowing shows how those addresses appear, showing only the beginning of the
output lines:

rudo% lspci | cut -d: -f1-2
00:00.0 Host bridge
00:01.0 PCI bridge
00:07.0 ISA bridge
00:07.1 IDE interface
00:07.3 Bridge
00:07.4 USB Controller
00:09.0 SCSI storage controller
00:0b.0 Multimedia video controller
01:05.0 VGA compatible controller
rudo% cat /proc/bus/pci/devices | cut -d\ -f1,3
0000 0
0008 0
0038 0
0039 0
003b 0
003c b
0048 a
0058 b
0128 a

472

22 June 2001 16:43

The two lists of devices are sorted in the same order, since lspci uses the /pr oc
files as its source of information. Taking the VGA video controller as an example,
0x128 means 01:05.0 when split into bus (eight bits), device (five bits) and func-
tion (three bits). The second field in the two listings shown shows the class of
device and the interrupt number, respectively.

The hardware circuitry of each peripheral board answers queries pertaining to
thr ee addr ess spaces: memory locations, I/O ports, and configuration registers. The
first two address spaces are shar ed by all the devices on a PCI bus (i.e., when you
access a memory location, all the devices see the bus cycle at the same time). The
configuration space, on the other hand, exploits geographical addressing. Configu-
ration transactions (i.e., bus accesses that insist on the configuration space)
addr ess only one slot at a time. Thus, there are no collisions at all with configura-
tion access.

As far as the driver is concerned, memory and I/O regions are accessed in the
usual ways via inb, readb, and so forth. Configuration transactions, on the other
hand, are per formed by calling specific kernel functions to access configuration
registers. With regard to interrupts, every PCI slot has four interrupt pins, and each
device function can use one of them without being concerned about how those
pins are routed to the CPU. Such routing is the responsibility of the computer plat-
for m and is implemented outside of the PCI bus. Since the PCI specification
requir es interrupt lines to be shareable, even a processor with a limited number of
IRQ lines, like the x86, can host many PCI interface boards (each with four inter-
rupt pins).

The I/O space in a PCI bus uses a 32-bit address bus (leading to 4 GB of I/O
ports), while the memory space can be accessed with either 32-bit or 64-bit
addr esses. However, 64-bit addresses are available only on a few platforms.
Addr esses ar e supposed to be unique to one device, but software may erroneously
configur e two devices to the same address, making it impossible to access either
one; the problem never occurs unless a driver is willingly playing with registers it
shouldn’t touch. The good news is that every memory and I/O address region
of fered by the interface board can be remapped by means of configuration trans-
actions. That is, the firmwar e initializes PCI hardware at system boot, mapping
each region to a differ ent addr ess to avoid collisions.* The addresses to which
these regions are curr ently mapped can be read from the configuration space, so
the Linux driver can access its devices without probing. After reading the configu-
ration registers the driver can safely access its hardware.

The PCI configuration space consists of 256 bytes for each device function, and
the layout of the configuration registers is standardized. Four bytes of the

* Actually, that configuration is not restricted to the time the system boots; hot-pluggable
devices, for example, cannot be available at boot time and appear later instead. The main
point here is that the device driver need not change the address of I/O or memory
regions.

The PCI Interface

473

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

configuration space hold a unique function ID, so the driver can identify its device
by looking for the specific ID for that peripheral.* In summary, each device board
is geographically addressed to retrieve its configuration registers; the information
in those registers can then be used to perfor m nor mal I/O access, without the
need for further geographic addressing.

It should be clear from this description that the main innovation of the PCI inter-
face standard over ISA is the configuration address space. Therefor e, in addition to
the usual driver code, a PCI driver needs the ability to access configuration space,
in order to save itself from risky probing tasks.

For the remainder of this chapter, we’ll use the word device to refer to a device
function, because each function in a multifunction board acts as an independent
entity. When we refer to a device, we mean the tuple ‘‘bus number, device num-
ber, function number,’’ which can be repr esented by a 16-bit number or two 8-bit
numbers (usually called bus and devfn).

Boot Time
To see how PCI works, we’ll start from system boot, since that’s when the devices
ar e configur ed.

When power is applied to a PCI device, the hardware remains inactive. In other
words, the device will respond only to configuration transactions. At power on,
the device has no memory and no I/O ports mapped in the computer’s address
space; every other device-specific feature, such as interrupt reporting, is disabled
as well.

Fortunately, every PCI motherboard is equipped with PCI-aware firmwar e, called
the BIOS, NVRAM, or PROM, depending on the platform. The firmwar e of fers
access to the device configuration address space by reading and writing registers
in the PCI controller.

At system boot, the firmwar e (or the Linux kernel, if so configured) perfor ms con-
figuration transactions with every PCI peripheral in order to allocate a safe place
for any address region it offers. By the time a device driver accesses the device, its
memory and I/O regions have already been mapped into the processor’s address
space. The driver can change this default assignment, but it will never need to do
that.

As suggested, the user can look at the PCI device list and the devices’ configura-
tion registers by reading /pr oc/bus/pci/devices and /pr oc/bus/pci/*/*. The former is a
text file with (hexadecimal) device information, and the latter are binary files that
report a snapshot of the configuration registers of each device, one file per device.

* You’ll find the ID of any device in its own hardware manual. A list is included in the file
pci.ids, part of the pciutils package and of the kernel sources; it doesn’t pretend to be
complete, but just lists the most renowned vendors and devices.

474

22 June 2001 16:43

Configuration Register s and Initialization
As mentioned earlier, the layout of the configuration space is device independent.
In this section, we look at the configuration registers that are used to identify the
peripherals.

PCI devices feature a 256-byte address space. The first 64 bytes are standardized,
while the rest are device dependent. Figure 15-2 shows the layout of the device-
independent configuration space.

- Required Register

- Optional Register

Vendor
ID

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Device
ID

Command
Reg

Status
Reg.

Revis-
ion
ID

Class Code Cache
Line

Latency
Timer

Header
Type

BIST
0x00

Base
Address 20x10

Base
Address 3

Base
Address 1

Base
Address 0

CardBus
CIS pointer0x20

Subsytem
Vendor ID

Base
Address 5

Base
Address 4

Subsytem
Device ID

0x30
Expansion ROM
Base Address Reserved IRQ

Line
IRQ
Pin

Min_Gnt Max_Lat

Figur e 15-2. The standar dized PCI configuration registers

As the figure shows, some of the PCI configuration registers are requir ed and
some are optional. Every PCI device must contain meaningful values in the
requir ed registers, whereas the contents of the optional registers depend on the
actual capabilities of the peripheral. The optional fields are not used unless the
contents of the requir ed fields indicate that they are valid. Thus, the requir ed fields
assert the board’s capabilities, including whether the other fields are usable or not.

It’s interesting to note that the PCI registers are always little-endian. Although the
standard is designed to be architectur e independent, the PCI designers sometimes
show a slight bias toward the PC environment. The driver writer should be careful
about byte ordering when accessing multibyte configuration registers; code that
works on the PC might not work on other platforms. The Linux developers have
taken care of the byte-ordering problem (see the next section, ‘‘Accessing the Con-
figuration Space’’), but the issue must be kept in mind. If you ever need to convert

The PCI Interface

475

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

data from host order to PCI order or vice versa, you can resort to the functions
defined in <asm/byteorder.h>, intr oduced in Chapter 10, knowing that PCI
byte order is little-endian.

Describing all the configuration items is beyond the scope of this book. Usually,
the technical documentation released with each device describes the supported
registers. What we’re inter ested in is how a driver can look for its device and how
it can access the device’s configuration space.

Thr ee or five PCI registers identify a device: vendorID, deviceID, and class
ar e the three that are always used. Every PCI manufacturer assigns proper values
to these read-only registers, and the driver can use them to look for the device.
Additionally, the fields subsystem vendorID and subsystem deviceID ar e
sometimes set by the vendor to further differ entiate similar devices.

Let’s look at these registers in more detail.

vendorID
This 16-bit register identifies a hardware manufactur er. For instance, every
Intel device is marked with the same vendor number, 0x8086. Ther e is a
global registry of such numbers, maintained by the PCI Special Interest Group,
and manufacturers must apply to have a unique number assigned to them.

deviceID
This is another 16-bit register, selected by the manufacturer; no official regis-
tration is requir ed for the device ID. This ID is usually paired with the vendor
ID to make a unique 32-bit identifier for a hardware device. We’ll use the
word signatur e to refer to the vendor and device ID pair. A device driver usu-
ally relies on the signature to identify its device; you can find what value to
look for in the hardware manual for the target device.

class
Every peripheral device belongs to a class. The class register is a 16-bit
value whose top 8 bits identify the ‘‘base class’’ (or gr oup). For example,
‘‘ether net’’ and ‘‘token ring’’ are two classes belonging to the ‘‘network’’ group,
while the ‘‘serial’’ and ‘‘parallel’’ classes belong to the ‘‘communication’’ group.
Some drivers can support several similar devices, each of them featuring a dif-
fer ent signatur e but all belonging to the same class; these drivers can rely on
the class register to identify their peripherals, as shown later.

subsystem vendorID
subsystem deviceID

These fields can be used for further identification of a device. If the chip in
itself is a generic interface chip to a local (onboard) bus, it is often used in
several completely differ ent roles, and the driver must identify the actual
device it is talking with. The subsystem identifiers are used to this aim.

Using those identifiers, you can detect and get hold of your device. With version
2.4 of the kernel, the concept of a PCI driver and a specialized initialization

476

22 June 2001 16:43

inter face have been introduced. While that interface is the preferr ed one for new
drivers, it is not available for older kernel versions. As an alternative to the PCI
driver interface, the following headers, macros, and functions can be used by a
PCI module to look for its hardware device. We chose to introduce this backward-
compatible interface first because it is portable to all kernel versions we cover in
this book. Moreover, it is somewhat more immediate by virtue of being less
abstracted from direct hardware management.

#include <linux/config.h>
The driver needs to know if the PCI functions are available in the kernel. By
including this header, the driver gains access to the CONFIG_ macr os, includ-
ing CONFIG_PCI, described next. But note that every source file that includes
<linux/module.h> alr eady includes this one as well.

CONFIG_PCI
This macro is defined if the kernel includes support for PCI calls. Not every
computer includes a PCI bus, so the kernel developers chose to make PCI
support a compile-time option to save memory when running Linux on non-
PCI computers. If CONFIG_PCI is not enabled, every PCI function call is
defined to retur n a failur e status, so the driver may or may not use a prepr o-
cessor conditional to mask out PCI support. If the driver can only handle PCI
devices (as opposed to both PCI and non-PCI device implementations), it
should issue a compile-time error if the macro is undefined.

#include <linux/pci.h>
This header declares all the prototypes introduced in this section, as well as
the symbolic names associated with PCI registers and bits; it should always be
included. This header also defines symbolic values for the error codes
retur ned by the functions.

int pci_present(void);
Because the PCI-related functions don’t make sense on non-PCI computers,
the pci_ present function allows one to check if PCI functionality is available or
not. The call is discouraged as of 2.4, because it now just checks if some PCI
device is there. With 2.0, however, a driver had to call the function to avoid
unpleasant errors when looking for its device. Recent kernels just report that
no device is there, instead. The function retur ns a boolean value of true
(nonzer o) if the host is PCI aware.

struct pci_dev;
The data structure is used as a software object repr esenting a PCI device. It is
at the core of every PCI operation in the system.

The PCI Interface

477

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

struct pci_dev *pci_find_device (unsigned int vendor,
unsigned int device, const struct pci_dev *from);

If CONFIG_PCI is defined and pci_ present is true, this function is used to
scan the list of installed devices looking for a device featuring a specific signa-
tur e. The from argument is used to get hold of multiple devices with the
same signature; the argument should point to the last device that has been
found, so that the search can continue instead of restarting from the head of
the list. To find the first device, from is specified as NULL. If no (further)
device is found, NULL is retur ned.

struct pci_dev *pci_find_class (unsigned int class, const
struct pci_dev *from);

This function is similar to the previous one, but it looks for devices belonging
to a specific class (a 16-bit class: both the base class and subclass). It is rarely
used nowadays except in very low-level PCI drivers. The from argument is
used exactly like in pci_find_device.

int pci_enable_device(struct pci_dev *dev);
This function actually enables the device. It wakes up the device and in some
cases also assigns its interrupt line and I/O regions. This happens, for exam-
ple, with CardBus devices (which have been made completely equivalent to
PCI at driver level).

struct pci_dev *pci_find_slot (unsigned int bus, unsigned
int devfn);

This function retur ns a PCI device structure based on a bus/device pair. The
devfn argument repr esents both the device and function items. Its use is
extr emely rar e (drivers should not care about which slot their device is
plugged into); it is listed here just for completeness.

Based on this information, initialization for a typical device driver that handles a
single device type will look like the following code. The code is for a hypothetical
device jail and is Just Another Instruction List:

#ifndef CONFIG_PCI
error "This driver needs PCI support to be available"
#endif

int jail_find_all_devices(void)
{

struct pci_dev *dev = NULL;
int found;

if (!pci_present())
return -ENODEV;

for (found=0; found < JAIL_MAX_DEV;) {
dev = pci_find_device(JAIL_VENDOR, JAIL_ID, dev);
if (!dev) /* no more devices are there */

478

22 June 2001 16:43

break;
/* do device-specific actions and count the device */
found += jail_init_one(dev);

}
return (index == 0) ? -ENODEV : 0;

}

The role of jail_init_one is very device specific and thus not shown here. There
ar e, nonetheless, a few things to keep in mind when writing that function:

• The function may need to perfor m additional probing to ensure that the
device is really one of those it supports. Some PCI peripherals contain a gen-
eral-purpose PCI interface chip and device-specific circuitry. Every peripheral
board that uses the same interface chip has the same signature. Further prob-
ing can either be perfor med by reading the subsystem identifiers or reading
specific device registers (in the device I/O regions, introduced later).

• Befor e accessing any device resource (I/O region or interrupt), the driver must
call pci_enable_device. If the additional probing just discussed requir es access-
ing device I/O or memory space, the function must be called before such
pr obing takes place.

• A network interface driver should make dev->driver_data point to the
struct net_device associated with this interface.

The function shown in the previous code excerpt retur ns 0 if it rejects the device
and 1 if it accepts it (possibly based on the further probing just described).

The code excerpt shown is correct if the driver deals with only one kind of PCI
device, identified by JAIL_VENDOR and JAIL_ID. If you need to support more
vendor/device pairs, your best bet is using the technique introduced later in
“Hardwar e Abstractions,” unless you need to support older kernels than 2.4, in
which case pci_find_class is your friend.

Using pci_find_class requir es that jail_find_all_devices per form a little more work
than in the example. The function should check the newly found device against a
list of vendor/device pairs, possibly using dev->vendor and dev->device. Its
cor e should look like this:

struct devid {unsigned short vendor, device} devlist[] = {
{JAIL_VENDOR1, JAIL_DEVICE1},
{JAIL_VENDOR2, JAIL_DEVICE2},
/* ... */
{ 0, 0 }

};

/* ... */

for (found=0; found < JAIL_MAX_DEV;) {
struct devid *idptr;
dev = pci_find_class(JAIL_CLASS, dev);

The PCI Interface

479

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

if (!dev) /* no more devices are there */
break;

for (idptr = devlist; idptr->vendor; idptr++) {
if (dev->vendor != idptr->vendor) continue;
if (dev->device != idptr->device) continue;
break;

}
if (!idptr->vendor) continue; /* not one of ours */
jail_init_one(dev); /* device-specific initialization */
found++;

}

Accessing the Configuration Space
After the driver has detected the device, it usually needs to read from or write to
the three address spaces: memory, port, and configuration. In particular, accessing
the configuration space is vital to the driver because it is the only way it can find
out where the device is mapped in memory and in the I/O space.

Because the micropr ocessor has no way to access the configuration space directly,
the computer vendor has to provide a way to do it. To access configuration space,
the CPU must write and read registers in the PCI controller, but the exact imple-
mentation is vendor dependent and not relevant to this discussion because Linux
of fers a standard interface to access the configuration space.

As far as the driver is concerned, the configuration space can be accessed through
8-bit, 16-bit, or 32-bit data transfers. The relevant functions are prototyped in
<linux/pci.h>:

int pci_read_config_byte(struct pci_dev *dev, int where, u8
*ptr);

int pci_read_config_word(struct pci_dev *dev, int where, u16
*ptr);

int pci_read_config_dword(struct pci_dev *dev, int where,
u32 *ptr);

Read one, two, or four bytes from the configuration space of the device identi-
fied by dev. The where argument is the byte offset from the beginning of the
configuration space. The value fetched from the configuration space is
retur ned thr ough ptr, and the retur n value of the functions is an error code.
The wor d and dwor d functions convert the value just read from little-endian to
the native byte order of the processor, so you need not deal with byte order-
ing.

480

22 June 2001 16:43

int pci_write_config_byte (struct pci_dev *dev, int where,
u8 val);

int pci_write_config_word (struct pci_dev *dev, int where,
u16 val);

int pci_write_config_dword (struct pci_dev *dev, int where,
u32 val);

Write one, two, or four bytes to the configuration space. The device is identi-
fied by dev as usual, and the value being written is passed as val. The wor d
and dwor d functions convert the value to little-endian before writing to the
peripheral device.

The preferr ed way to read the configuration variables you need is using the fields
of the struct pci_dev that refers to your device. Nonetheless, you’ll need the
functions just listed if you need to write and read back a configuration variable.
Also, you’ll need the pci_r ead_ functions if you want to keep backward compati-
bility with kernels older than 2.4.*

The best way to address the configuration variables using the pci_r ead_ functions
is by means of the symbolic names defined in <linux/pci.h>. For example, the
following two-line function retrieves the revision ID of a device by passing the
symbolic name for where to pci_r ead_config_byte:

unsigned char jail_get_revision(unsigned char bus, unsigned char fn)
{

unsigned char *revision;

pci_read_config_byte(bus, fn, PCI_REVISION_ID, &revision);
return revision;

}

As suggested, when accessing multibyte values as single bytes the programmer
must remember to watch out for byte-order problems.

Looking at a configuration snapshot

If you want to browse the configuration space of the PCI devices on your system,
you can proceed in one of two ways. The easier path is using the resources that
Linux already offers via /pr oc/bus/pci, although these were not available in version
2.0 of the kernel. The alternative that we follow here is, instead, writing some
code of our own to perfor m the task; such code is both portable across all known
2.x ker nel releases and a good way to look at the tools in action. The source file
pci/pcidata.c is included in the sample code provided on the O’Reilly FTP site.

* The field names in struct pci_dev changed from version 2.2 and 2.4 because the first
layout proved suboptimal. As for 2.0, there was no pci_dev structur e, and the one you
use is a light emulation offer ed by the pci-compat.h header.

The PCI Interface

481

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

This module creates a dynamic /pr oc/pcidata file that contains a binary snapshot
of the configuration space for your PCI devices. The snapshot is updated every
time the file is read. The size of /pr oc/pcidata is limited to PAGE_SIZE bytes (to
avoid dealing with multipage /pr oc files, as introduced in ‘‘Using the /proc Filesys-
tem’’ in Chapter 4). Thus, it lists only the configuration memory for the first
PAGE_SIZE/256 devices, which means 16 or 32 devices according to the plat-
for m you are running on. We chose to make /pr oc/pcidata a binary file to keep
the code simple, instead of making it a text file like most /pr oc files. Note that the
files in /pr oc/bus/pci ar e binary as well.

Another limitation of pcidata is that it scans only the first PCI bus on the system. If
your computer includes bridges to other PCI buses, pcidata ignor es them. This
should not be an issue for sample code not meant to be of real use.

Devices appear in /pr oc/pcidata in the same order used by /pr oc/bus/pci/devices
(but in the opposite order from the one used by /pr oc/pci in version 2.0).

For example, our frame grabber appears fifth in /pr oc/pcidata and (currently) has
the following configuration registers:

morgana% dd bs=256 skip=4 count=1 if=/proc/pcidata | od -Ax -t x1
1+0 records in
1+0 records out
000000 86 80 23 12 06 00 00 02 00 00 00 04 00 20 00 00
000010 00 00 00 f1 00 00 00 00 00 00 00 00 00 00 00 00
000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000030 00 00 00 00 00 00 00 00 00 00 00 00 0a 01 00 00
000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
000100

The numbers in this dump repr esent the PCI registers. Using Figure 15-2 as a refer-
ence, you can look at the meaning of the numbers shown. Alternatively, you can
use the pcidump pr ogram, also found on the FTP site, which formats and labels
the output listing.

The pcidump code is not worth including here because the program is simply a
long table, plus 10 lines of code that scan the table. Instead, let’s look at some
selected output lines:

morgana% dd bs=256 skip=4 count=1 if=/proc/pcidata | ./pcidump
1+0 records in
1+0 records out

Compulsory registers:
Vendor id: 8086
Device id: 1223
I/O space enabled: n
Memory enabled: y
Master enabled: y
Revision id (decimal): 0
Programmer Interface: 00

482

22 June 2001 16:43

Class of device: 0400
Header type: 00
Multi function device: n

Optional registers:
Base Address 0: f1000000
Base Address 0 Is I/O: n
Base Address 0 is 64-bits: n
Base Address 0 is below-1M: n
Base Address 0 is prefetchable: n
Does generate interrupts: y
Interrupt line (decimal): 10
Interrupt pin (decimal): 1

pcidata and pcidump, used with gr ep, can be useful tools for debugging a driver’s
initialization code, even though their task is in part already available in the pciutils
package, included in all recent Linux distributions. Note that, unlike other sample
code accompanying the book, the pcidata.c module is subject to the GPL because
we took the PCI scanning loop from the kernel sources. This shouldn’t matter to
you as a driver writer, because we’ve included the module in the source files only
as a support utility, not as a template to be reused in new drivers.

Accessing the I/O and Memory Spaces
A PCI device implements up to six I/O address regions. Each region consists of
either memory or I/O locations. Most devices implement their I/O registers in
memory regions, because it’s generally a saner approach (as explained in “I/O
Ports and I/O Memory,” in Chapter 8). However, unlike normal memory, I/O reg-
isters should not be cached by the CPU because each access can have side effects.
The PCI device that implements I/O registers as a memory region marks the differ-
ence by setting a ‘‘memory-is-prefetchable’’ bit in its configuration register.* If the
memory region is marked as prefetchable, the CPU can cache its contents and do
all sorts of optimization with it; nonprefetchable memory access, on the other
hand, can’t be optimized because each access can have side effects, exactly like
I/O ports usually have. Peripherals that map their control registers to a memory
addr ess range declare that range as nonprefetchable, whereas something like
video memory on PCI boards is prefetchable. In this section, we use the word
region to refer to a generic I/O address space, either memory-mapped or port-
mapped.

An interface board reports the size and current location of its regions using config-
uration registers — the six 32-bit registers shown in Figure 15-2, whose symbolic
names are PCI_BASE_ADDRESS_0 thr ough PCI_BASE_ADDRESS_5. Since the
I/O space defined by PCI is a 32-bit address space, it makes sense to use the same
configuration interface for memory and I/O. If the device uses a 64-bit address

* The information lives in one of the low-order bits of the base address PCI registers. The
bits are defined in <linux/pci.h>.

The PCI Interface

483

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

bus, it can declare regions in the 64-bit memory space by using two consecutive
PCI_BASE_ADDRESS registers for each region, low bits first. It is possible for one
device to offer both 32-bit regions and 64-bit regions.

PCI I/O resour ces in Linux 2.4

In Linux 2.4, the I/O regions of PCI devices have been integrated in the generic
resource management. For this reason, you don’t need to access the configuration
variables in order to know where your device is mapped in memory or I/O space.
The preferr ed inter face for getting region information consists of the following
functions:

unsigned long pci_resource_start(struct pci_dev *dev, int
bar);

The function retur ns the first address (memory address or I/O port number)
associated with one of the six PCI I/O regions. The region is selected by the
integer bar (the base address register), ranging from 0 to 5, inclusive.

unsigned long pci_resource_end(struct pci_dev *dev, int
bar);

The function retur ns the last address that is part of the I/O region number
bar. Note that this is the last usable address, not the first address after the
region.

unsigned long pci_resource_flags(struct pci_dev *dev, int
bar);

This function retur ns the flags associated with this resource.

Resource flags are used to define some features of the individual resource. For PCI
resources associated with PCI I/O regions, the information is extracted from the
base address registers, but can come from elsewhere for resources not associated
with PCI devices.

All resource flags are defined in <linux/ioport.h>; the most important of
them are listed here.

IORESOURCE_IO
IORESOURCE_MEM

If the associated I/O region exists, one and only one of these flags is set.

IORESOURCE_PREFETCH
IORESOURCE_READONLY

The flags tell whether a memory region is prefetchable and/or write protected.
The latter flag is never set for PCI resources.

By making use of the pci_r esource_ functions, a device driver can completely
ignor e the underlying PCI registers, since the system already used them to
structur e resource information.

484

22 June 2001 16:43

Peeking at the base address reg isters

By avoiding direct access to the PCI registers, you gain a better hardware abstrac-
tion and forward portability but can get no backward portability. If you want your
device driver to work with Linux versions older than 2.4, you can’t use the beauti-
ful resource interface and must access the PCI registers directly.

In this section we look at how base address registers behave and how they can be
accessed. All of this is obviously superfluous if you can exploit resource manage-
ment as shown previously.

We won’t go into much detail here about the base address registers, because if
you’r e going to write a PCI driver, you will need the hardware manual for the
device anyway. In particular, we are not going to use either the prefetchable bit or
the two ‘‘type’’ bits of the registers, and we’ll limit the discussion to 32-bit periph-
erals. It’s nonetheless interesting to see how things are usually implemented and
how Linux drivers deal with PCI memory.

The PCI specs state that manufacturers must map each valid region to a config-
urable address. This means that the device must be equipped with a pro-
grammable 32-bit address decoder for each region it implements, and a 64-bit
pr ogrammable decoder must be present in any board that exploits the 64-bit PCI
extension.

The actual implementation and use of a programmable decoder is simplified by
the fact that usually the number of bytes in a region is a power of two, for exam-
ple, 32 bytes, 4 KB, or 2 MB. Moreover, it wouldn’t make much sense to map a
region to an unaligned address; 1 MB regions naturally align at an address that is a
multiple of 1 MB, and 32-byte regions at a multiple of 32. The PCI specification
exploits this alignment; it states that the address decoder must look only at the
high bits of the address bus and that only the high bits are programmable. This
convention also means that the size of any region must be a power of two.

Mapping a PCI region in the physical address space is thus perfor med by setting a
suitable value in the high bits of a configuration register. For example, a 1-MB
region, which has 20 bits of address space, is remapped by setting the high 12 bits
of the register; thus, to make the board respond to the 64-MB to 65-MB address
range, you can write to the register any address in the 0x040xxxxx range. In
practice, only very high addresses are used to map PCI regions.

This ‘‘partial decoding’’ technique has the additional advantage that the software
can determine the size of a PCI region by checking the number of nonpro-
grammable bits in the configuration register. To this end, the PCI standard states
that unused bits must always read as 0. By imposing a minimum size of 8 bytes for
I/O regions and 16 bytes for memory regions, the standard can fit some extra
infor mation into the low bits of the base address registers:

The PCI Interface

485

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

• Bit 0 is the ‘‘space’’ bit. It is set to 0 if the region maps to the memory address
space, and 1 if it maps to the I/O address space.

• Bits 1 and 2 are the ‘‘type’’ bits: memory regions can be marked as 32-bit
regions, 64-bit regions, or ‘‘32-bit regions that must be mapped below 1 MB’’
(an obsolete x86-specific idea, now unused).

• Bit 3 is the ‘‘prefetchable’’ bit, used for memory regions.

It’s apparent from whence information for the resource flags comes.

Detecting the size of a PCI region is simplified by using several bit masks defined
in <linux/pci.h>: the PCI_BASE_ADDRESS_SPACE bit mask is set to
PCI_BASE_ADDRESS_SPACE_MEMORY if this is a memory region, and to
PCI_BASE_ADDRESS_SPACE_IO if it is an I/O region. To know the actual
addr ess wher e a memory region is mapped, you can AND the PCI register with
PCI_BASE_ADDRESS_MEM_MASK to discard the low bits listed earlier. Use
PCI_BASE_ADDRESS_IO_MASK for I/O regions. Please note that PCI regions
may be allocated in any order by device manufacturers; it’s not uncommon to find
devices that use the first and third regions, leaving the second unused.

Typical code for reporting the current location and size of the PCI regions looks
like the following. This code is part of the pcir egions module, distributed in the
same directory as pcidata; the module creates a /pr oc/pciregions file, using the
code shown earlier to generate data. The program writes a value of all 1s to the
configuration register and reads it back to know how many bits of the registers
can be programmed. Note that while the program probes the configuration regis-
ter, the device is actually remapped to the top of the physical address space,
which is why interrupt reporting is disabled during the probe (to prevent a driver
fr om accessing the region while it is mapped to the wrong place).

Despite the PCI specs stating that the I/O address space is 32 bits wide, a few
manufactur ers, clearly x86 biased, pretend that it is 64 KB and do not implement
all 32 bits of the base address register. That’s why the following code (and the ker-
nel proper) ignores high bits of the address mask for I/O regions.

static u32 addresses[] = {
PCI_BASE_ADDRESS_0,
PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4,
PCI_BASE_ADDRESS_5,
0

};

int pciregions_read_proc(char *buf, char **start, off_t offset,
int len, int *eof, void *data)

{
/* this macro helps in keeping the following lines short */

486

22 June 2001 16:43

#define PRINTF(fmt, args...) sprintf(buf+len, fmt, ## args)
len=0;

/* Loop through the devices (code not printed in the book) */

/* Print the address regions of this device */
for (i=0; addresses[i]; i++) {

u32 curr, mask, size;
char *type;

pci_read_config_dword(dev, addresses[i],&curr);
cli();
pci_write_config_dword(dev, addresses[i],˜0);
pci_read_config_dword(dev, addresses[i],&mask);
pci_write_config_dword(dev, addresses[i],curr);
sti();

if (!mask)
continue; /* there may be other regions */

/*
* apply the I/O or memory mask to current position.
* note that I/O is limited to 0xffff, and 64-bit is not
* supported by this simple implementation
*/

if (curr & PCI_BASE_ADDRESS_SPACE_IO) {
curr &= PCI_BASE_ADDRESS_IO_MASK;

} else {
curr &= PCI_BASE_ADDRESS_MEM_MASK;

}

len += PRINTF("\tregion %i: mask 0x%08lx, now at 0x%08lx\n",
i, (unsigned long)mask,

(unsigned long)curr);
/* extract the type, and the programmable bits */
if (mask & PCI_BASE_ADDRESS_SPACE_IO) {

type = "I/O"; mask &= PCI_BASE_ADDRESS_IO_MASK;
size = (˜mask + 1) & 0xffff; /* Bleah */

} else {
type = "mem"; mask &= PCI_BASE_ADDRESS_MEM_MASK;

size = ˜mask + 1;
}
len += PRINTF("\tregion %i: type %s, size %i (%i%s)\n", i,

type, size,
(size & 0xfffff) == 0 ? size >> 20 :

(size & 0x3ff) == 0 ? size >> 10 : size,
(size & 0xfffff) == 0 ? "MB" :

(size & 0x3ff) == 0 ? "KB" : "B");

The PCI Interface

487

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

if (len > PAGE_SIZE / 2) {
len += PRINTF("... more info skipped ...\n");
*eof = 1; return len;

}
}

return len;
}

Her e, for example, is what /pr oc/pciregions reports for our frame grabber:

Bus 0, device 13, fun 0 (id 8086-1223)
region 0: mask 0xfffff000, now at 0xf1000000
region 0: type mem, size 4096 (4KB)

It’s interesting to note that the memory size reported by the program just listed can
be overstated. For instance, /pr oc/pciregions reported that a video device had 16
MB of memory when it actually had only 1. This lie is acceptable because the size
infor mation is used only by the firmwar e to allocate address ranges; region over-
sizing is not a problem for the driver writer who knows the internals of the device
and can correctly deal with the address range assigned by the firmwar e. In this
case, device RAM could be added later without the need to change the behavior of
PCI registers while upgrading the RAM.

Such overstating, when present, is reflected in the resource interface, and
pci_r esource_size will report the overstated size.

PCI Interrupts
As far as interrupts are concer ned, PCI is easy to handle. By the time Linux boots,
the computer’s firmwar e has already assigned a unique interrupt number to the
device, and the driver just needs to use it. The interrupt number is stored in con-
figuration register 60 (PCI_INTERRUPT_LINE), which is one byte wide. This
allows for as many as 256 interrupt lines, but the actual limit depends on the CPU
being used. The driver doesn’t need to bother checking the interrupt number,
because the value found in PCI_INTERRUPT_LINE is guaranteed to be the right
one.

If the device doesn’t support interrupts, register 61 (PCI_INTERRUPT_PIN) is 0;
otherwise, it’s nonzero. However, since the driver knows if its device is interrupt
driven or not, it doesn’t usually need to read PCI_INTERRUPT_PIN.

Thus, PCI-specific code for dealing with interrupts just needs to read the configu-
ration byte to obtain the interrupt number that is saved in a local variable, as
shown in the following code. Otherwise, the information in Chapter 9 applies.

result = pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &myirq);
if (result) { /* deal with error */ }

The rest of this section provides additional information for the curious reader, but
isn’t needed for writing drivers.

488

22 June 2001 16:43

A PCI connector has four interrupt pins, and peripheral boards can use any or all
of them. Each pin is individually routed to the motherboard’s interrupt controller,
so interrupts can be shared without any electrical problems. The interrupt con-
tr oller is then responsible for mapping the interrupt wires (pins) to the processor’s
hardwar e; this platform-dependent operation is left to the controller in order to
achieve platform independence in the bus itself.

The read-only configuration register located at PCI_INTERRUPT_PIN is used to
tell the computer which single pin is actually used. It’s worth remembering that
each device board can host up to eight devices; each device uses a single interrupt
pin and reports it in its own configuration register. Dif ferent devices on the same
device board can use differ ent interrupt pins or share the same one.

The PCI_INTERRUPT_LINE register, on the other hand, is read/write. When the
computer is booted, the firmwar e scans its PCI devices and sets the register for
each device according to how the interrupt pin is routed for its PCI slot. The value
is assigned by the firmwar e because only the firmwar e knows how the mother-
board routes the differ ent interrupt pins to the processor. For the device driver,
however, the PCI_INTERRUPT_LINE register is read-only. Interestingly, recent
versions of the Linux kernel under some circumstances can assign interrupt lines
without resorting to the BIOS.

Handling Hot-Pluggable Devices
During the 2.3 development cycle, the kernel developers overhauled the PCI pro-
gramming interface in order to simplify things and support hot-pluggable devices,
that is, those devices that can be added to or removed from the system while the
system runs (such as CardBus devices). The material introduced in this section is
not available in 2.2 and earlier kernels, but is the preferr ed way to go for newer
drivers.

The basic idea being exploited is that whenever a new device appears during the
system’s lifetime, all available device drivers must check whether the new device is
theirs or not. Therefor e, instead of using the classic init and cleanup entry points
for the driver, the hot-plug-aware device driver must register an object with the
ker nel, and the pr obe function for the object will be asked to check any device in
the system to take hold of it or leave it alone.

This approach has no downside: the usual case of a static device list is handled by
scanning the device list once for each device at system boot; modularized drivers
will just unload as usual if no device is there, and an external process devoted to
monitoring the bus will arrange for them to be loaded if the need arises. This is
exactly how the PCMCIA subsystem has always worked, and having it integrated
in the kernel proper allows for more coher ent handling of similar issues with dif-
fer ent hardwar e envir onments.

The PCI Interface

489

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

While you may object that hot-pluggable PCI is not common these days, the new
driver-object technique proves very useful even for non-hot-plug drivers that must
handle a number of alternative devices. The initialization code is simplified and
str eamlined because it just needs to check the curr ent device against a list of
known devices, instead of actively searching the PCI bus by looping once around
pci_find_class or looping several times around pci_find_device.

But let’s show some code. The design is built around struct pci_driver,
defined in <linux/pci.h> as usual. The structure defines the operations it
implements, and also includes a list of devices it supports (in order to avoid
unneeded calls to its code). In short, here’s how initialization and cleanup are han-
dled, for a hypothetical ‘‘hot plug PCI module’’ (HPPM):

struct pci_driver hppm_driver = { /* */ };

int hppm_init_module(void)
{

return pci_module_init(&hppm_driver);
}

int hppm_cleanup_module(void)
{

pci_unregister_driver(&hppm_driver);
}

module_init(hppm);
module_exit(hppm);

That’s all. It’s incredibly easy. The hidden magic is split between the implementa-
tion of pci_module_init and the internals of the driver structure. We’d better follow
a top-down path and start by introducing the relevant functions:

int pci_register_driver(struct pci_driver *drv);
This function inserts the driver in a linked list that is maintained by the system.
That’s how compiled-in device drivers perfor m their initialization; it is not
used directly by modularized code. The retur n value is a count of devices
being handled by the driver.

int pci_module_init(struct pci_driver *drv);
This function is a wrapper over the previous one and is meant to be called by
modularized initialization code. It retur ns 0 for success and -ENODEV if no
device has been found. This is meant to prevent a module from staying in
memory if no device is currently there (expecting the module to be auto-
loaded later if a matching device appears). Since this function is defined as
inline, its behavior actually changes depending on whether MODULE is
defined or not; it can thus be used as a drop-in replacement for pci_r egis-
ter_driver even for nonmodularized code.

490

22 June 2001 16:43

void pci_unregister_driver(struct pci_driver *drv);
This function removes the driver from the linked list of known drivers.

void pci_insert_device(struct pci_dev *dev, struct pci_bus
*bus);

void pci_remove_device(struct pci_dev *dev);
These two functions implement the flip side of the hot-plug system; they are
called by the event handlers associated with plug/unplug events reported by a
bus. The dev structur e is used to scan the list of register ed drivers. There is no
need for device drivers to call them, and they are listed here to help give a
complete view of the design around PCI drivers.

struct pci_driver *pci_dev_driver(const struct pci_dev
*dev);

This is a utility function to look up the driver associated with a device (if any).
It’s used by /pr oc/bus support functions and is not meant to be called by
device drivers.

The pci_dr iver structure

The pci_driver data structure is the core of hot-plug support, and we’ll
describe it in detail to complete the whole picture. The structure is pretty small,
being made of just a few methods and a device ID list.

struct list_head node;
Used to manage a list of drivers. It’s an example of generic lists, which were
intr oduced in “Linked Lists” in Chapter 10; it’s not meant to be used by device
drivers.

char *name;
The name of the driver; it has informational value.

const struct pci_device_id *id_table;
An array that lists which devices are supported by this driver. The pr obe
method will be called only for devices that match one of the items in the
array. If the field is specified as NULL, the pr obe function will be called for
every device in the system. If the field is not NULL, the last item in the array
must be set to 0.

int (*probe)(struct pci_dev *dev, const struct pci_device_id
*id);

The function must initialize the device it is passed and retur n 0 in case of suc-
cess or a negative error code (actually, the error code is not currently used,
but it’s safe to retur n an errno value anyway instead of just -1).

The PCI Interface

491

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

void (*remove)(struct pci_dev *dev);
The remove method is used to tell the device driver that it should shut down
the device and stop dealing with it, releasing any associated storage. The func-
tion is called either when the device is removed from the system or when the
driver calls pci_unr egister_driver in order to be unloaded from the system.
Unlike pr obe, this method is specific to one PCI device, not to the whole set
handled by this driver; the specific device is passed as an argument.

int (*suspend)(struct pci_dev *dev, u32 state);
int (*resume)(struct pci_dev *dev);

These are the power-management functions for PCI devices. If the device
driver supports power-management features, these two methods should be
implemented to shut down and reactivate the device; they are called by higher
layers at proper times.

The PCI driver object is quite straightforward and a pleasure to use. We think
ther e’s little to add to the field enumeration, because normal hardware-handling
code fits well in this abstraction without the need to tweak it in any way.

The only missing piece left to describe is the struct pci_device_id object.
The structure includes several ID fields, and the actual device that needs to be
driven is matched against all of the fields. Any field can be set to PCI_ANY_ID to
tell the system to effectively ignore it.

unsigned int vendor, device;
The vendor and device IDs of the device this driver is interested in. The val-
ues are matched against registers 0x00 and 0x02 of the PCI configuration
space.

unsigned int subvendor, subdevice;
The sub-IDs, matched against registers 0x2C and 0x2E of the PCI configuration
space. They are used in matching the device because sometimes a ven-
dor/device ID pair identifies a group of devices and the driver can only work
with a few items in the group.

unsigned int class, class_mask;
If the device driver wants to deal with an entire class or a subset thereof, it
can set the previous fields to PCI_ANY_ID and use class identifiers instead.
The class_mask is present to allow both for drivers that want to deal with a
base class and for drivers that are only interested in a subclass. If device selec-
tion is perfor med using vendor/device identifiers, both these fields must be set
to 0 (not to PCI_ANY_ID, since the check is perfor med thr ough a logical
AND with the mask field).

492

22 June 2001 16:43

unsigned long driver_data;
A field left for use by the device driver. It can, for example, differ entiate
between the various devices at compilation time, avoiding tedious arrays of
conditional tests at runtime.

It’s interesting to note that the pci_device_id data structure is just a hint to the
system; the actual device driver is still free to retur n 0 from its pr obe method, thus
refusing the device even if it matched the array of device identifiers. Thus if, for
example, there exist several devices with the same signature, the driver can look
for further information before choosing whether it is able to drive the peripheral
or not.

Hardware Abstractions
We complete the discussion of PCI by taking a quick look at how the system han-
dles the plethora of PCI controllers available on the marketplace. This is just an
infor mative section, meant to show to the curious reader how the object-oriented
layout of the kernel extends down to the lowest levels.

The mechanism used to implement hardware abstraction is the usual structure
containing methods. It’s a powerful technique that adds just the minimal overhead
of derefer encing a pointer to the normal overhead of a function call. In the case of
PCI management, the only hardware-dependent operations are the ones that read
and write configuration registers, because everything else in the PCI world is
accomplished by directly reading and writing the I/O and memory address spaces,
and those are under direct control of the CPU.

The relevant structure for hardware abstraction, thus, includes only six fields:

struct pci_ops {
int (*read_byte)(struct pci_dev *, int where, u8 *val);
int (*read_word)(struct pci_dev *, int where, u16 *val);
int (*read_dword)(struct pci_dev *, int where, u32 *val);
int (*write_byte)(struct pci_dev *, int where, u8 val);
int (*write_word)(struct pci_dev *, int where, u16 val);
int (*write_dword)(struct pci_dev *, int where, u32 val);

};

The structure is defined in <linux/pci.h> and used by drivers/pci/pci.c, wher e
the actual public functions are defined.

The six functions that act on the PCI configuration space have more overhead than
der efer encing a pointer, because they use cascading pointers due to the high
object-orientedness of the code, but the overhead is not an issue in operations that
ar e per formed quite rarely and never in speed-critical paths. The actual implemen-
tation of pci_r ead_config_byte(dev), for instance, expands to:

The PCI Interface

493

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

dev->bus->ops->read_byte();

The various PCI buses in the system are detected at system boot, and that’s when
the struct pci_bus items are created and associated with their features,
including the ops field.

Implementing hardware abstraction via ‘‘hardware operations’’ data structures is
typical in the Linux kernel. One important example is the struct
alpha_machine_vector data structure. It is defined in <asm-
alpha/machvec.h> and it takes care of everything that may change across dif-
fer ent Alpha-based computers.

A Look Back: ISA
The ISA bus is quite old in design and is a notoriously poor perfor mer, but it still
holds a good part of the market for extension devices. If speed is not important
and you want to support old motherboards, an ISA implementation is preferable to
PCI. An additional advantage of this old standard is that if you are an electr onic
hobbyist, you can easily build your own ISA devices, something definitely not pos-
sible with PCI.

On the other hand, a great disadvantage of ISA is that it’s tightly bound to the PC
architectur e; the interface bus has all the limitations of the 80286 processor and
causes endless pain to system programmers. The other great problem with the ISA
design (inherited from the original IBM PC) is the lack of geographical addressing,
which has led to many problems and lengthy unplug-rejumper-plug-test cycles to
add new devices. It’s interesting to note that even the oldest Apple II computers
wer e alr eady exploiting geographical addressing, and they featured jumperless
expansion boards.

Despite its great disadvantages, ISA is still used in several unexpected places. For
example, the VR41xx series of MIPS processors used in several palmtops features
an ISA-compatible expansion bus, strange as it seems. The reason behind these
unexpected uses of ISA is the extreme low cost of some legacy hardware, like
8390-based Ethernet cards, so a CPU with ISA electrical signaling can easily exploit
the awful but cheap PC devices.

Hardware Resour ces
An ISA device can be equipped with I/O ports, memory areas, and interrupt lines.

Even though the x86 processors support 64 kilobytes of I/O port memory (i.e., the
pr ocessor asserts 16 address lines), some old PC hardware decodes only the low-
est 10 address lines. This limits the usable address space to 1024 ports, because
any address in the range 1 KB to 64 KB will be mistaken for a low address by any

494

22 June 2001 16:43

device that decodes only the low address lines. Some peripherals circumvent this
limitation by mapping only one port into the low kilobyte and using the high
addr ess lines to select between differ ent device registers. For example, a device
mapped at 0x340 can safely use port 0x740, 0xB40, and so on.

If the availability of I/O ports is limited, memory access is still worse. An ISA
device can use only the memory range between 640 KB and 1 MB and between 15
MB and 16 MB. The 640-KB to 1-MB range is used by the PC BIOS, by VGA-com-
patible video boards, and by various other devices, leaving little space available
for new devices. Memory at 15 MB, on the other hand, is not directly supported
by Linux, and hacking the kernel to support it is a waste of programming time
nowadays.

The third resource available to ISA device boards is interrupt lines. A limited num-
ber of interrupt lines are routed to the ISA bus, and they are shar ed by all the
inter face boards. As a result, if devices aren’t properly configured, they can find
themselves using the same interrupt lines.

Although the original ISA specification doesn’t allow interrupt sharing across
devices, most device boards allow it.* Interrupt sharing at the software level is
described in ‘‘Interrupt Sharing,’’ in Chapter 9.

ISA Prog ramming
As far as programming is concerned, there’s no specific aid in the kernel or the
BIOS to ease access to ISA devices (like there is, for example, for PCI). The only
facilities you can use are the registries of I/O ports and IRQ lines, described in
‘‘Using Resources’’ (Chapter 2) and ‘‘Installing an Interrupt Handler’’ (Chapter 9).

The programming techniques shown throughout the first part of this book apply to
ISA devices; the driver can probe for I/O ports, and the interrupt line must be
autodetected with one of the techniques shown in ‘‘Autodetecting the IRQ Num-
ber,’’ in Chapter 9.

The helper functions isa_r eadb and friends have been briefly introduced in “Using
I/O Memory” in Chapter 8 and there’s nothing more to say about them.

* The problem with interrupt sharing is a matter of electrical engineering: if a device drives
the signal line inactive—by applying a low-impedance voltage level—the interrupt can’t
be shared. If, on the other hand, the device uses a pull-up resistor to the inactive logic
level, then sharing is possible. This is nowadays the norm. However, ther e’s still a poten-
tial risk of losing interrupt events since ISA interrupts are edge triggered instead of level
trigger ed. Edge-trigger ed interrupts are easier to implement in hardware but don’t lend
themselves to safe sharing.

A Look Back: ISA

495

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

The Plug-and-Play Specification
Some new ISA device boards follow peculiar design rules and requir e a special ini-
tialization sequence intended to simplify installation and configuration of add-on
inter face boards. The specification for the design of these boards is called Plug
and Play (PnP) and consists of a cumbersome rule set for building and configuring
jumperless ISA devices. PnP devices implement relocatable I/O regions; the PC’s
BIOS is responsible for the relocation — reminiscent of PCI.

In short, the goal of PnP is to obtain the same flexibility found in PCI devices
without changing the underlying electrical interface (the ISA bus). To this end, the
specs define a set of device-independent configuration registers and a way to geo-
graphically address the interface boards, even though the physical bus doesn’t
carry per-board (geographical) wiring—every ISA signal line connects to every
available slot.

Geographical addressing works by assigning a small integer, called the Car d Select
Number (CSN), to each PnP peripheral in the computer. Each PnP device features
a unique serial identifier, 64 bits wide, that is hardwired into the peripheral board.
CSN assignment uses the unique serial number to identify the PnP devices. But the
CSNs can be assigned safely only at boot time, which requir es the BIOS to be PnP
awar e. For this reason, old computers requir e the user to obtain and insert a spe-
cific configuration diskette even if the device is PnP capable.

Inter face boards following the PnP specs are complicated at the hardware level.
They are much more elaborate than PCI boards and requir e complex software. It’s
not unusual to have difficulty installing these devices, and even if the installation
goes well, you still face the perfor mance constraints and the limited I/O space of
the ISA bus. It’s much better in our opinion to install PCI devices whenever possi-
ble and enjoy the new technology instead.

If you are inter ested in the PnP configuration software, you can browse
drivers/net/3c509.c, whose probing function deals with PnP devices. Linux 2.1.33
added some initial support for PnP as well, in the directory drivers/pnp.

PC/104 and PC/104+
In the industrial world, two bus architectur es ar e quite fashionable currently:
PC/104 and PC/104+. Both are standard in PC-class single-board computers.

Both standards refer to specific form factors for printed circuit boards as well as
electrical/mechanical specifications for board interconnections. The practical
advantage of these buses is that they allow circuit boards to be stacked vertically
using a plug-and-socket kind of connector on one side of the device.

496

22 June 2001 16:43

The electrical and logical layout of the two buses is identical to ISA (PC/104) and
PCI (PC/104+), so software won’t notice any differ ence between the usual desktop
buses and these two.

Other PC Buses
PCI and ISA are the most commonly used peripheral interfaces in the PC world,
but they aren’t the only ones. Here’s a summary of the features of other buses
found in the PC market.

MCA
Micr o Channel Architectur e (MCA) is an IBM standard used in PS/2 computers and
some laptops. The main problem with Micro Channel is the lack of documenta-
tion, which has resulted in a lack of Linux support for MCA up until recently.

At the hardware level, Micro Channel has more featur es than ISA. It supports mul-
timaster DMA, 32-bit address and data lines, shared interrupt lines, and geographi-
cal addressing to access per-board configuration registers. Such registers are called
Pr ogrammable Option Select, or POS, but they don’t have all the features of the
PCI registers. Linux support for Micro Channel includes functions that are exported
to modules.

A device driver can read the integer value MCA_bus to see if it is running on a
Micr o Channel computer, similar to how it uses pci_ present if it’s interested in PCI
support. If the symbol is a prepr ocessor macr o, the macro
MCA_bus_ _is_a_macro is defined as well. If MCA_bus_ _is_a_macro is
undefined, then MCA_bus is an integer variable exported to modularized code.
Both MCA_BUS and MCA_bus_ _is_a_macro ar e defined in <asm/proces-
sor.h>.

EISA
The Extended ISA (EISA) bus is a 32-bit extension to ISA, with a compatible inter-
face connector; ISA device boards can be plugged into an EISA connector. The
additional wires are routed under the ISA contacts.

Like PCI and MCA, the EISA bus is designed to host jumperless devices, and it has
the same features as MCA: 32-bit address and data lines, multimaster DMA, and
shar ed interrupt lines. EISA devices are configur ed by software, but they don’t
need any particular operating system support. EISA drivers already exist in the
Linux kernel for Ethernet devices and SCSI controllers.

An EISA driver checks the value EISA_bus to determine if the host computer car-
ries an EISA bus. Like MCA_bus, EISA_bus is either a macro or a variable,
depending on whether EISA_bus_ _is_a_macro is defined. Both symbols are
defined in <asm/processor.h>.

Other PC Buses

497

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

As far as the driver is concerned, there is no special support for EISA in the kernel,
and the programmer must deal with ISA extensions by himself. The driver uses
standard EISA I/O operations to access the EISA registers. The drivers that are
alr eady in the kernel can be used as sample code.

VLB
Another extension to ISA is the VESA Local Bus (VLB) interface bus, which
extends the ISA connectors by adding a third lengthwise slot. A device can just
plug into this extra connector (without plugging in the two associated ISA connec-
tors), because the VLB slot duplicates all important signals from the ISA connec-
tors. Such ‘‘standalone’’ VLB peripherals not using the ISA slot are rar e, because
most devices need to reach the back panel so that their external connectors are
available.

The VESA bus is much more limited in its capabilities than the EISA, MCA, and PCI
buses and is disappearing from the market. No special kernel support exists for
VLB. However, both the Lance Ethernet driver and the IDE disk driver in Linux 2.0
can deal with VLB versions of their devices.

SBus
While most computers nowadays are equipped with a PCI or ISA interface bus,
most not-so-recent SPARC-based workstations use SBus to connect their peripher-
als.

SBus is quite an advanced design, although it has been around for a long time. It
is meant to be processor independent (even though only SPARC computers use it)
and is optimized for I/O peripheral boards. In other words, you can’t plug addi-
tional RAM into SBus slots (RAM expansion boards have long been forgotten even
in the ISA world, and PCI does not support them either). This optimization is
meant to simplify the design of both hardware devices and system software, at the
expense of some additional complexity in the motherboard.

This I/O bias of the bus results in peripherals using virtual addr esses to transfer
data, thus bypassing the need to allocate a contiguous DMA buffer. The mother-
board is responsible for decoding the virtual addresses and mapping them to
physical addresses. This requir es attaching an MMU (memory management unit) to
the bus; the chipset in charge of the task is called IOMMU. Although somehow
mor e complex than using physical addresses on the interface bus, this design is
gr eatly simplified by the fact that SPARC processors have always been designed by
keeping the MMU core separate from the CPU core (either physically or at least
conceptually). Actually, this design choice is shared by other smart processor
designs and is beneficial overall. Another feature of this bus is that device boards
exploit massive geographical addressing, so there’s no need to implement an
addr ess decoder in every peripheral or to deal with address conflicts.

498

22 June 2001 16:43

SBus peripherals use the Forth language in their PROMs to initialize themselves.
Forth was chosen because the interpreter is lightweight and therefor e can be easily
implemented in the firmwar e of any computer system. In addition, the SBus speci-
fication outlines the boot process, so that compliant I/O devices fit easily into the
system and are recognized at system boot. This was a great step to support multi-
platfor m devices; it’s a completely differ ent world from the PC-centric ISA stuff we
wer e used to. However, it didn’t succeed for a variety of commercial reasons.

Although current kernel versions offer quite full-featured support for SBus devices,
the bus is so little used nowadays that it’s not worth covering in detail here. Inter-
ested readers can look at source files in ar ch/spar c/kernel and ar ch/spar c/mm.

NuBus
Another interesting but forgotten interface bus is NuBus. It is found on older Mac
computers (those with the M68k family of CPUs).

All of the bus is memory-mapped (like everything with the M68k), and the devices
ar e only geographically addressed. This is good and typical of Apple, as the much
older Apple II already had a similar bus layout. What is bad is that it’s almost
impossible to find documentation on NuBus, due to the close-everything policy
Apple has always followed with its Mac computers (and unlike the previous Apple
II, whose source code and schematics were available at little cost).

The file drivers/nubus/nubus.c includes almost everything we know about this
bus, and it’s interesting reading; it shows how much hard reverse engineering
developers had to do.

Exter nal Buses
One of the most recent entries in the field of interface buses is the whole class of
exter nal buses. This includes USB, FireWir e, and IEEE1284 (parallel-port-based
exter nal bus). These interfaces are somewhat similar to older and not-so-external
technology such as PCMCIA/CardBUS and even SCSI.

Conceptually, these buses are neither full-featured interface buses (like PCI is) nor
dumb communication channels (like the serial ports are). It’s hard to classify the
softwar e that is needed to exploit their features, as it’s usually split into two levels:
the driver for the hardware contr oller (like drivers for PCI SCSI adaptors or PCI
contr ollers intr oduced earlier in “The PCI Interface”) and the driver for the specific
‘‘client’’ device (like sd.c handles generic SCSI disks and so-called PCI drivers deal
with cards plugged in the bus).

But there’s another problem with these new buses. With the exception of USB,
their support is either not mature or is somehow in need of a revision (the latter
condition applies especially to the SCSI kernel subsystem, which is reported to be
far from optimal by several of the best kernel hackers).

Exter nal Buses

499

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

USB
USB, the Universal Serial Bus, is the only external bus that is currently mature
enough to deserve some discussion. Topologically, a USB subsystem is not laid
out as a bus; it is rather a tree built out of several point-to-point links. The links
ar e four-wir e cables (ground, power, and two signal wires) that connect a device
and a hub (just like twisted pair Ethernet). Usually, PC-class computers are
equipped with a ‘‘root hub’’ and offer two plugs for external connections. You can
connect either devices or additional hubs to the plugs.

The bus is nothing exciting at the technological level, as it’s a single-master imple-
mentation in which the host computer polls the various devices. Despite this
intrinsic limit of the bus, it has interesting features, such as the ability for a device
to request a fixed bandwidth for its data transfers in order to reliably support
video and audio I/O. Another important feature of USB is that it acts merely as a
communication channel between the device and the host, without requiring spe-
cific meaning or structure in the data it delivers.*

This is unlike SCSI communication and like standard serial media.

These features, together with the inherent hot-plug capability of the design, make
USB a handy low-cost mechanism to connect (and disconnect) several devices to
the computer without the need to shut the system down, open the cover, and
swear over screws and wires. USB is becoming popular in the PC market but
remains unsuitable for high-speed devices because its maximum transfer rate is 12
Mb per second.

USB is supported by version 2.2.18 (and later) and 2.4.x of the Linux kernel. The
USB controller in any computer belongs to one of two kinds, and both drivers are
part of the standard kernel.

Wr iting a USB Driver
As far as ‘‘client’’ device drivers are concer ned, the approach to USB is similar to
the pci_driver layout: the device driver registers its driver object with the USB
subsystem, and it later uses vendor and device identifiers to identify insertion of its
hardwar e.

The relevant data structure is struct usb_driver, and its typical use is as fol-
lows:

#include <linux/usb.h>

static struct usb_driver sample_usb_driver = {

* Actually, some structuring is there, but it mostly reduces to the requir ement for the com-
munication to fit into one of a few predefined classes: a keyboard won’t allocate band-
width, for example, while a camera will.

500

22 June 2001 16:43

name: "sample",
probe: sample_probe,
disconnect: sample_disconnect,

};

int init_module(void)
{

/* just register it; returns 0 or error code */
return usb_register(&sample_usb_driver);

}

void cleanup_module(void)
{

usb_deregister(&sample_usb_driver);
}

The pr obe function declared in the data structure is called by the USB kernel sub-
system whenever a new device is connected to the system (or when the driver is
loaded if any unclaimed devices are alr eady connected to the bus).

Each device identifies itself by providing the system with vendor, device, and class
identifiers, similar to what PCI devices do. The task of sample_ probe, ther efor e, is
looking into the information it receives and claiming ownership of the device if
suitable.

To claim ownership, the function retur ns a non-NULL pointer that will be used to
identify the device. This will usually be a pointer to the device-specific data struc-
tur e that is at the core of the device driver as a whole.

To exchange information with the device, you’ll then need to tell the USB subsys-
tem how to communicate. This task is perfor med by filling a struct urb (for
USB request block) and by passing it to usb_submit_urb. This step is usually per-
for med by the open method associated with the device special file, or an equiva-
lent function.

Note that not every USB driver needs to implement its own device special files by
requesting a major number and so on. Devices that fall within a class for which
the kernel offers generalized support won’t have their own device files and will
report their information through other means.

An example of generalized management is input handling. If your USB device is
an input device (such as a graphic tablet), you won’t allocate a major number but
rather will register your hardware by calling input_r egister_device. In this case, the
open callback of your input device is in charge of establishing communication by
calling usb_submit_urb.

A USB input driver, ther efor e, must rely on several other system blocks, and most
of them can be modules as well. The module-stacking architectur e for USB input
device drivers is shown in Figure 15-3.

Exter nal Buses

501

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

keybdev.omousedev.ousbkbd.ousbmouse.ousb-uhci.o

usb.core.o input.o

Linux Kernel

Figur e 15-3. Modules involved in USB input management

You’ll find a complete USB device driver in the sample files available on the
O’Reilly FTP site. It is a very simplified keyboard and mouse driver that shows
how to lay out a complete USB driver. To keep it simple, it doesn’t use the input
subsystem to report events but rather posts messages about them using printk.
You’ll need at least a USB keyboard or a USB mouse to test the driver.

Ther e’s quite a lot of documentation on USB available currently, including two
articles by one of your authors, whose style and technical level resembles that of
Linux Device Drivers. These articles even include a more complete USB sample
device driver that uses the input kernel subsystem and can be run by alternative
means if you have no USB devices handy. You can find them at
http://www.linux.it/ker neldocs.

Backward Compatibility
The current implementation of PCI support in the kernel was not available with
version 2.0 of the kernel. With 2.0 the support API was much more raw, because it
lacked the various objects that have been described in this chapter.

The six functions to access the configuration space received as arguments the
16-bit low-level key to the PCI device instead of using a pointer to struct
pci_dev. Also, you had to include <asm/pcibios.h> befor e being able to
read or write to the configuration space.

Fortunately, dealing with the differ ence is not a big problem, and if you include
sysdep.h you’ll be able to use 2.4 semantics even when compiling under 2.0. PCI
support for version 2.0 is available in the header pci-compat.h, automatically
included by sysdep.h when you compile under 2.0. The header, as distributed,
implements the most important functions used to work with the PCI bus.

502

22 June 2001 16:43

If you use pci-compat.h to develop drivers that work all the way from 2.0 through
2.4, you must call pci_r elease_device when you are done with a pci_dev item.
This happens because the fake pci_dev structur es cr eated by the header are allo-
cated with kmalloc, wher eas the real structures of 2.2 and 2.4 are static resources
in the kernel proper. The extra function is defined to do nothing by sysdep.h
whenever compiling for 2.2 or 2.4, so it does no harm. Feel free to look at pcir e-
gions.c or pcidata.c to see portable code in action.

Another relevant differ ence in 2.0 is /pr oc support for PCI. There was no
/pr oc/bus/pci file hierarchy (and no /pr oc/bus at all, actually), only a single
/pr oc/pci file. It was meant more for human reading than for machine reading, and
it was not very readable anyway. Under 2.2 it was possible to select a ‘‘backward-
compatible /pr oc/pci’’ at compile time, but the obsolete file was completely
removed in version 2.4.

The concept of hot-pluggable PCI drivers (and struct pci_driver) is new as
of version 2.4. We do not offer backward-compatible macros to use the feature on
older kernels.

Quick Reference
This section, as usual, summarizes the symbols introduced in the chapter.

#include <linux/config.h>
CONFIG_PCI

This macro should be used to conditionally compile PCI-related code. When a
PCI module is loaded to a non-PCI kernel, insmod complains about several
symbols being unresolved.

#include <linux/pci.h>
This header includes symbolic names for the PCI registers and several vendor
and device ID values.

int pci_present(void);
This function retur ns a boolean value that tells whether the computer we’re
running on has PCI capabilities or not.

struct pci_dev;
struct pci_bus;
struct pci_driver;
struct pci_device_id;

These structures repr esent the objects involved in PCI management. The con-
cept of pci_driver is new as of Linux 2.4, and struct pci_device_id
is central to it.

Quick Reference

503

22 June 2001 16:43

Chapter 15: Over view of Per ipheral Buses

struct pci_dev *pci_find_device(unsigned int vendor,
unsigned int device, struct pci_dev *from);

struct pci_dev *pci_find_class(unsigned int class, struct
pci_dev *from);

These functions are used to look up the device list looking for devices with a
specific signature or belonging to a specific class. The retur n value is NULL if
none is found. from is used to continue a search; it must be NULL the first
time you call either function, and it must point to the device just found if you
ar e searching for more devices.

int pci_read_config_byte(struct pci_dev *dev, int where, u8
*val);

int pci_read_config_word(struct pci_dev *dev, int where, u16
*val);

int pci_read_config_dword(struct pci_dev *dev, int where,
u32 *val);

int pci_write_config_byte (struct pci_dev *dev, int where,
u8 *val);

int pci_write_config_word (struct pci_dev *dev, int where,
u16 *val);

int pci_write_config_dword (struct pci_dev *dev, int where,
u32 *val);

These functions are used to read or write a PCI configuration register.
Although the Linux kernel takes care of byte ordering, the programmer must
be careful about byte ordering when assembling multibyte values from indi-
vidual bytes. The PCI bus is little-endian.

int pci_register_driver(struct pci_driver *drv);
int pci_module_init(struct pci_driver *drv);
void pci_unregister_driver(struct pci_driver *drv);

These functions support the concept of a PCI driver. Wher eas compiled-in
code uses pci_r egister_driver (which retur ns the number of devices that are
managed by this driver), modularized code should call pci_module_init
instead (which retur ns 0 if one or more devices are ther e and -ENODEV if no
suitable device is plugged into the system).

#include <linux/usb.h>
#include <linux/input.h>

The former header is where everything related to USB resides and must be
included by USB device drivers. The latter defines the core of the input sub-
system. Neither of them is available in Linux 2.0.

504

22 June 2001 16:43

struct usb_driver;
int usb_register(struct usb_driver *d);
void usb_deregister(struct usb_driver *d);

usb_driver is the main building block of USB device drivers. It must be
register ed and unregister ed at module load and unload time.

Quick Reference

505

22 June 2001 16:43

