
CHAPTER FOURTEEN

NETWORK DRIVERS

We are now through discussing char and block drivers and are ready to move on
to the fascinating world of networking. Network interfaces are the third standard
class of Linux devices, and this chapter describes how they interact with the rest of
the kernel.

The role of a network interface within the system is similar to that of a mounted
block device. A block device registers its features in the blk_dev array and other
ker nel structur es, and it then “transmits” and “receives” blocks on request, by
means of its request function. Similarly, a network interface must register itself in
specific data structures in order to be invoked when packets are exchanged with
the outside world.

Ther e ar e a few important differ ences between mounted disks and packet-delivery
inter faces. To begin with, a disk exists as a special file in the /dev dir ectory,
wher eas a network interface has no such entry point. The normal file operations
(r ead, write, and so on) do not make sense when applied to network interfaces, so
it is not possible to apply the Unix “everything is a file” approach to them. Thus,
network interfaces exist in their own namespace and export a differ ent set of
operations.

Although you may object that applications use the read and write system calls
when using sockets, those calls act on a software object that is distinct from the
inter face. Several hundred sockets can be multiplexed on the same physical inter-
face.

But the most important differ ence between the two is that block drivers operate
only in response to requests from the kernel, whereas network drivers receive
packets asynchronously from the outside. Thus, while a block driver is asked to
send a buffer toward the kernel, the network device asks to push incoming
packets toward the kernel. The kernel interface for network drivers is designed for
this differ ent mode of operation.

425

22 June 2001 16:43

Chapter 14: Network Drivers

Network drivers also have to be prepar ed to support a number of administrative
tasks, such as setting addresses, modifying transmission parameters, and maintain-
ing traffic and error statistics. The API for network drivers reflects this need, and
thus looks somewhat differ ent fr om the interfaces we have seen so far.

The network subsystem of the Linux kernel is designed to be completely protocol
independent. This applies to both networking protocols (IP versus IPX or other
pr otocols) and hardware protocols (Ethernet versus token ring, etc.). Interaction
between a network driver and the kernel proper deals with one network packet at
a time; this allows protocol issues to be hidden neatly from the driver and the
physical transmission to be hidden from the protocol.

This chapter describes how the network interfaces fit in with the rest of the Linux
ker nel and shows a memory-based modularized network interface, which is called
(you guessed it) snull. To simplify the discussion, the interface uses the Ethernet
hardwar e pr otocol and transmits IP packets. The knowledge you acquire from
examining snull can be readily applied to protocols other than IP, and writing a
non-Ether net driver is only differ ent in tiny details related to the actual network
pr otocol.

This chapter doesn’t talk about IP numbering schemes, network protocols, or
other general networking concepts. Such topics are not (usually) of concern to the
driver writer, and it’s impossible to offer a satisfactory overview of networking
technology in less than a few hundred pages. The interested reader is urged to
refer to other books describing networking issues.

The networking subsystem has seen many changes over the years as the kernel
developers have striven to provide the best perfor mance possible. The bulk of this
chapter describes network drivers as they are implemented in the 2.4 kernel. Once
again, the sample code works on the 2.0 and 2.2 kernels as well, and we cover the
dif ferences between those kernels and 2.4 at the end of the chapter.

One note on terminology is called for before getting into network devices. The
networking world uses the term octet to refer to a group of eight bits, which is
generally the smallest unit understood by networking devices and protocols. The
ter m byte is almost never encountered in this context. In keeping with standard
usage, we will use octet when talking about networking devices.

How snull Is Designed
This section discusses the design concepts that led to the snull network interface.
Although this information might appear to be of marginal use, failing to under-
stand this driver might lead to problems while playing with the sample code.

The first, and most important, design decision was that the sample interfaces
should remain independent of real hardware, just like most of the sample code

426

22 June 2001 16:43

used in this book. This constraint led to something that resembles the loopback
inter face. snull is not a loopback interface, however; it simulates conversations
with real remote hosts in order to better demonstrate the task of writing a network
driver. The Linux loopback driver is actually quite simple; it can be found in
drivers/net/loopback.c.

Another feature of snull is that it supports only IP traffic. This is a consequence of
the internal workings of the interface —snull has to look inside and interpret the
packets to properly emulate a pair of hardware inter faces. Real interfaces don’t
depend on the protocol being transmitted, and this limitation of snull doesn’t
af fect the fragments of code that are shown in this chapter.

Assigning IP Numbers
The snull module creates two interfaces. These interfaces are dif ferent from a sim-
ple loopback in that whatever you transmit through one of the interfaces loops
back to the other one, not to itself. It looks like you have two external links, but
actually your computer is replying to itself.

Unfortunately, this effect can’t be accomplished through IP-number assignment
alone, because the kernel wouldn’t send out a packet through interface A that was
dir ected to its own interface B. Instead, it would use the loopback channel without
passing through snull. To be able to establish a communication through the snull
inter faces, the source and destination addresses need to be modified during data
transmission. In other words, packets sent through one of the interfaces should be
received by the other, but the receiver of the outgoing packet shouldn’t be recog-
nized as the local host. The same applies to the source address of received pack-
ets.

To achieve this kind of “hidden loopback,” the snull inter face toggles the least sig-
nificant bit of the third octet of both the source and destination addresses; that is,
it changes both the network number and the host number of class C IP numbers.
The net effect is that packets sent to network A (connected to sn0, the first inter-
face) appear on the sn1 inter face as packets belonging to network B.

To avoid dealing with too many numbers, let’s assign symbolic names to the IP
numbers involved:

• snullnet0 is the class C network that is connected to the sn0 inter face.
Similarly, snullnet1 is the network connected to sn1. The addresses of
these networks should differ only in the least significant bit of the third octet.

• local0 is the IP address assigned to the sn0 inter face; it belongs to snull-
net0. The address associated with sn1 is local1. local0 and local1
must differ in the least significant bit of their third octet and in the fourth
octet.

How snull Is Designed

427

22 June 2001 16:43

Chapter 14: Network Drivers

• remote0 is a host in snullnet0, and its fourth octet is the same as that of
local1. Any packet sent to remote0 will reach local1 after its class C
addr ess has been modified by the interface code. The host remote1 belongs
to snullnet1, and its fourth octet is the same as that of local0.

The operation of the snull inter faces is depicted in Figure 14-1, in which the host-
name associated with each interface is printed near the interface name.

localnet
lo
localhost

eth0
morgana

sn0
local0

sn1
local1

snullnet0
remote0

snullnet1

remote1

Figur e 14-1. How a host sees its interfaces

Her e ar e possible values for the network numbers. Once you put these lines in
/etc/networks, you can call your networks by name. The values shown were cho-
sen from the range of numbers reserved for private use.

snullnet0 192.168.0.0
snullnet1 192.168.1.0

The following are possible host numbers to put into /etc/hosts:

192.168.0.1 local0
192.168.0.2 remote0
192.168.1.2 local1
192.168.1.1 remote1

The important feature of these numbers is that the host portion of local0 is the
same as that of remote1, and the host portion of local1 is the same as that of
remote0. You can use completely differ ent numbers as long as this relationship
applies.

428

22 June 2001 16:43

Be careful, however, if your computer is already connected to a network. The
numbers you choose might be real Internet or intranet numbers, and assigning
them to your interfaces will prevent communication with the real hosts. For exam-
ple, although the numbers just shown are not routable Internet numbers, they
could already be used by your private network if it lives behind a firewall.

Whatever numbers you choose, you can correctly set up the interfaces for opera-
tion by issuing the following commands:

ifconfig sn0 local0
ifconfig sn1 local1
case "‘uname -r‘" in 2.0.*)

route add -net snullnet0 dev sn0
route add -net snullnet1 dev sn1

esac

Ther e is no need to invoke route with 2.2 and later kernels because the route is
automatically added. Also, you may need to add the netmask 255.255.255.0
parameter if the address range chosen is not a class C range.

At this point, the “remote” end of the interface can be reached. The following
scr eendump shows how a host reaches remote0 and remote1 thr ough the snull
inter face.

morgana% ping -c 2 remote0
64 bytes from 192.168.0.99: icmp_seq=0 ttl=64 time=1.6 ms
64 bytes from 192.168.0.99: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

morgana% ping -c 2 remote1
64 bytes from 192.168.1.88: icmp_seq=0 ttl=64 time=1.8 ms
64 bytes from 192.168.1.88: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

Note that you won’t be able to reach any other “host” belonging to the two net-
works because the packets are discarded by your computer after the address has
been modified and the packet has been received. For example, a packet aimed at
192.168.0.32 will leave through sn0 and reappear at sn1 with a destination
addr ess of 192.168.1.32, which is not a local address for the host computer.

The Physical Transpor t of Packets
As far as data transport is concerned, the snull inter faces belong to the Ethernet
class.

snull emulates Ethernet because the vast majority of existing networks—at least
the segments that a workstation connects to—are based on Ethernet technology,
be it 10baseT, 100baseT, or gigabit. Additionally, the kernel offers some

How snull Is Designed

429

22 June 2001 16:43

Chapter 14: Network Drivers

generalized support for Ethernet devices, and there’s no reason not to use it. The
advantage of being an Ethernet device is so strong that even the plip inter face (the
inter face that uses the printer ports) declares itself as an Ethernet device.

The last advantage of using the Ethernet setup for snull is that you can run tcp-
dump on the interface to see the packets go by. Watching the interfaces with tcp-
dump can be a useful way to see how the two interfaces work. (Note that on 2.0
ker nels, tcpdump will not work properly unless snull’s interfaces show up as
ethx. Load the driver with the eth=1 option to use the regular Ethernet names,
rather than the default snx names.)

As was mentioned previously, snull only works with IP packets. This limitation is
a result of the fact that snull snoops in the packets and even modifies them, in
order for the code to work. The code modifies the source, destination, and check-
sum in the IP header of each packet without checking whether it actually conveys
IP information. This quick-and-dirty data modification destroys non-IP packets. If
you want to deliver other protocols through snull, you must modify the module’s
source code.

Connecting to the Ker nel
We’ll start looking at the structure of network drivers by dissecting the snull
source. Keeping the source code for several drivers handy might help you follow
the discussion and to see how real-world Linux network drivers operate. As a
place to start, we suggest loopback.c, plip.c, and 3c509.c, in order of increasing
complexity. Keeping skeleton.c handy might help as well, although this sample
driver doesn’t actually run. All these files live in drivers/net, within the kernel
source tree.

Module Loading
When a driver module is loaded into a running kernel, it requests resources and
of fers facilities; there’s nothing new in that. And there’s also nothing new in the
way resources are requested. The driver should probe for its device and its hard-
war e location (I/O ports and IRQ line)—but without registering them—as
described in “Installing an Interrupt Handler” in Chapter 9. The way a network
driver is register ed by its module initialization function is differ ent fr om char and
block drivers. Since there is no equivalent of major and minor numbers for net-
work interfaces, a network driver does not request such a number. Instead, the
driver inserts a data structure for each newly detected interface into a global list of
network devices.

Each interface is described by a struct net_device item. The structures for
sn0 and sn1, the two snull inter faces, ar e declar ed like this:

430

22 June 2001 16:43

struct net_device snull_devs[2] = {
{ init: snull_init, }, /* init, nothing more */
{ init: snull_init, }

};

The initialization shown seems quite simple—it sets only one field. In fact, the
net_device structur e is huge, and we will be filling in other pieces of it later on.
But it is not helpful to cover the entire structur e at this point; instead, we will
explain each field as it is used. For the interested reader, the definition of the
structur e may be found in <linux/netdevice.h>.

The first struct net_device field we will look at is name, which holds the
inter face name (the string identifying the interface). The driver can hardwire a
name for the interface or it can allow dynamic assignment, which works like this:
if the name contains a %d for mat string, the first available name found by replac-
ing that string with a small integer is used. Thus, eth%d is turned into the first
available ethn name; the first Ethernet interface is called eth0, and the others
follow in numeric order. The snull inter faces ar e called sn0 and sn1 by default.
However, if eth=1 is specified at load time (causing the integer variable
snull_eth to be set to 1), snull_init uses dynamic assignment, as follows:

if (!snull_eth) { /* call them "sn0" and "sn1" */
strcpy(snull_devs[0].name, "sn0");
strcpy(snull_devs[1].name, "sn1");

} else { /* use automatic assignment */
strcpy(snull_devs[0].name, "eth%d");
strcpy(snull_devs[1].name, "eth%d");

}

The other field we initialized is init, a function pointer. Whenever you register a
device, the kernel asks the driver to initialize itself. Initialization means probing for
the physical interface and filling the net_device structur e with the proper val-
ues, as described in the following section. If initialization fails, the structure is not
linked to the global list of network devices. This peculiar way of setting things up
is most useful during system boot; every driver tries to register its own devices, but
only devices that exist are linked to the list.

Because the real initialization is perfor med elsewher e, the initialization function
has little to do, and a single statement does it:

for (i=0; i<2; i++)
if ((result = register_netdev(snull_devs + i)))

printk("snull: error %i registering device \"%s\"\n",
result, snull_devs[i].name);

else device_present++;

Connecting to the Ker nel

431

22 June 2001 16:43

Chapter 14: Network Drivers

Initializing Each Device
Pr obing for the device should be perfor med in the init function for the interface
(which is often called the “probe” function). The single argument received by init
is a pointer to the device being initialized; its retur n value is either 0 or a negative
err or code, usually -ENODEV.

No real probing is perfor med for the snull inter face, because it is not bound to
any hardware. When you write a real driver for a real interface, the usual rules for
pr obing devices apply, depending on the peripheral bus you are using. Also, you
should avoid registering I/O ports and interrupt lines at this point. Hardware regis-
tration should be delayed until device open time; this is particularly important if
interrupt lines are shar ed with other devices. You don’t want your interface to be
called every time another device triggers an IRQ line just to reply “no, it’s not
mine.”

The main role of the initialization routine is to fill in the dev structur e for this
device. Note that for network devices, this structure is always put together at run-
time. Because of the way the network interface probing works, the dev structur e
cannot be set up at compile time in the same manner as a file_operations or
block_device_operations structur e. So, on exit from dev->init, the dev
structur e should be filled with correct values. Fortunately, the kernel takes care of
some Ethernet-wide defaults through the function ether_setup, which fills several
fields in struct net_device.

The core of snull_init is as follows:

ether_setup(dev); /* assign some of the fields */

dev->open = snull_open;
dev->stop = snull_release;
dev->set_config = snull_config;
dev->hard_start_xmit = snull_tx;
dev->do_ioctl = snull_ioctl;
dev->get_stats = snull_stats;
dev->rebuild_header = snull_rebuild_header;
dev->hard_header = snull_header;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = snull_tx_timeout;
dev->watchdog_timeo = timeout;
#endif
/* keep the default flags, just add NOARP */
dev->flags |= IFF_NOARP;
dev->hard_header_cache = NULL; /* Disable caching */
SET_MODULE_OWNER(dev);

The single unusual feature of the code is setting IFF_NOARP in the flags. This
specifies that the interface cannot use ARP, the Address Resolution Protocol. ARP is

432

22 June 2001 16:43

a low-level Ethernet protocol; its job is to turn IP addr esses into Ethernet Medium
Access Control (MAC) addresses. Since the “remote” systems simulated by snull do
not really exist, there is nobody available to answer ARP requests for them. Rather
than complicate snull with the addition of an ARP implementation, we chose to
mark the interface as being unable to handle that protocol. The assignment to
hard_header_cache is there for a similar reason: it disables the caching of the
(nonexistent) ARP replies on this interface. This topic is discussed in detail later in
this chapter in “MAC Address Resolution.”

The initialization code also sets a couple of fields (tx_timeout and watch-
dog_timeo) that relate to the handling of transmission timeouts. We will cover
this topic thoroughly later in this chapter in “Transmission Timeouts.”

Finally, this code calls SET_MODULE_OWNER, which initializes the owner field of
the net_device structur e with a pointer to the module itself. The kernel uses
this information in exactly the same way it uses the owner field of the
file_operations structur e—to maintain the module’s usage count.

We’ll look now at one more struct net_device field, priv. Its role is similar
to that of the private_data pointer that we used for char drivers. Unlike
fops->private_data, this priv pointer is allocated at initialization time
instead of open time, because the data item pointed to by priv usually includes
the statistical information about interface activity. It’s important that statistical infor-
mation always be available, even when the interface is down, because users may
want to display the statistics at any time by calling ifconfig. The memory wasted
by allocating priv during initialization instead of on open is irrelevant because
most probed interfaces are constantly up and running in the system. The snull
module declares a snull_priv data structure to be used for priv:

struct snull_priv {
struct net_device_stats stats;
int status;
int rx_packetlen;
u8 *rx_packetdata;
int tx_packetlen;
u8 *tx_packetdata;
struct sk_buff *skb;
spinlock_t lock;

};

The structure includes an instance of struct net_device_stats, which is the
standard place to hold interface statistics. The following lines in snull_init allocate
and initialize dev->priv:

dev->priv = kmalloc(sizeof(struct snull_priv), GFP_KERNEL);
if (dev->priv == NULL)

return -ENOMEM;
memset(dev->priv, 0, sizeof(struct snull_priv));
spin_lock_init(& ((struct snull_priv *) dev->priv)->lock);

Connecting to the Ker nel

433

22 June 2001 16:43

Chapter 14: Network Drivers

Module Unloading
Nothing special happens when the module is unloaded. The module cleanup
function simply unregisters the interfaces from the list after releasing memory asso-
ciated with the private structure:

void snull_cleanup(void)
{

int i;

for (i=0; i<2; i++) {
kfree(snull_devs[i].priv);
unregister_netdev(snull_devs + i);

}
return;

}

Modular ized and Nonmodularized Driver s
Although char and block drivers are the same regardless of whether they’re modu-
lar or linked into the kernel, that’s not the case for network drivers.

When a driver is linked directly into the Linux kernel, it doesn’t declare its own
net_device structur es; the structures declared in drivers/net/Space.c ar e used
instead. Space.c declar es a linked list of all the network devices, both driver-spe-
cific structures like plip1 and general-purpose eth devices. Ethernet drivers
don’t care about their net_device structur es at all, because they use the general-
purpose structures. Such general eth device structures declare ethif_ probe as their
init function. A programmer inserting a new Ethernet interface in the mainstream
ker nel needs only to add a call to the driver’s initialization function to ethif_ probe.
Authors of non-eth drivers, on the other hand, insert their net_device struc-
tur es in Space.c. In both cases only the source file Space.c has to be modified if
the driver must be linked to the kernel proper.

At system boot, the network initialization code loops through all the net_device
structur es and calls their probing (dev->init) functions by passing them a
pointer to the device itself. If the probe function succeeds, the kernel initializes the
next available net_device structur e to use that interface. This way of setting up
drivers permits incremental assignment of devices to the names eth0, eth1, and
so on, without changing the name field of each device.

When a modularized driver is loaded, on the other hand, it declares its own
net_device structur es (as we have seen in this chapter), even if the interface it
contr ols is an Ethernet interface.

The curious reader can learn mor e about interface initialization by looking at
Space.c and net_init.c.

434

22 June 2001 16:43

The net_device Structure in Detail
The net_device structur e is at the very core of the network driver layer and
deserves a complete description. At a first reading, however, you can skip this sec-
tion, because you don’t need a thorough understanding of the structure to get
started. This list describes all the fields, but more to provide a refer ence than to be
memorized. The rest of this chapter briefly describes each field as soon as it is
used in the sample code, so you don’t need to keep referring back to this section.

struct net_device can be conceptually divided into two parts: visible and
invisible. The visible part of the structure is made up of the fields that can be
explicitly assigned in static net_device structur es. All structures in
drivers/net/Space.c ar e initialized in this way, without using the tagged syntax for
structur e initialization. The remaining fields are used internally by the network
code and usually are not initialized at compilation time, not even by tagged initial-
ization. Some of the fields are accessed by drivers (for example, the ones that are
assigned at initialization time), while some shouldn’t be touched.

The Visible Head
The first part of struct net_device is composed of the following fields, in
this order:

char name[IFNAMSIZ];
The name of the device. If the name contains a %d for mat string, the first
available device name with the given base is used; assigned numbers start at
zer o.

unsigned long rmem_end;
unsigned long rmem_start;
unsigned long mem_end;
unsigned long mem_start;

Device memory information. These fields hold the beginning and ending
addr esses of the shared memory used by the device. If the device has differ ent
receive and transmit memories, the mem fields are used for transmit memory
and the rmem fields for receive memory. mem_start and mem_end can be
specified on the kernel command line at system boot, and their values are
retrieved by ifconfig. The rmem fields are never refer enced outside of the
driver itself. By convention, the end fields are set so that end - start is
the amount of available on-board memory.

unsigned long base_addr;
The I/O base address of the network interface. This field, like the previous
ones, is assigned during device probe. The ifconfig command can be used to
display or modify the current value. The base_addr can be explicitly
assigned on the kernel command line at system boot or at load time. The field
is not used by the kernel, like the memory fields shown previously.

The net_device Structure in Detail

435

22 June 2001 16:43

Chapter 14: Network Drivers

unsigned char irq;
The assigned interrupt number. The value of dev->irq is printed by ifconfig
when interfaces are listed. This value can usually be set at boot or load time
and modified later using ifconfig.

unsigned char if_port;
Which port is in use on multiport devices. This field is used, for example, with
devices that support both coaxial (IF_PORT_10BASE2) and twisted-pair
(IF_PORT_10BASET) Ether net connections. The full set of known port types
is defined in <linux/netdevice.h>.

unsigned char dma;
The DMA channel allocated by the device. The field makes sense only with
some peripheral buses, like ISA. It is not used outside of the device driver
itself, but for informational purposes (in ifconfig).

unsigned long state;
Device state. The field includes several flags. Drivers do not normally manipu-
late these flags directly; instead, a set of utility functions has been provided.
These functions will be discussed shortly when we get into driver operations.

struct net_device *next;
Pointer to the next device in the global linked list. This field shouldn’t be
touched by the driver.

int (*init)(struct net_device *dev);
The initialization function, described earlier.

The Hidden Fields
The net_device structur e includes many additional fields, which are usually
assigned at device initialization. Some of these fields convey information about the
inter face, while some exist only for the benefit of the driver (i.e., they are not used
by the kernel); other fields, most notably the device methods, are part of the ker-
nel-driver interface.

We will list the three groups separately, independent of the actual order of the
fields, which is not significant.

Interface infor mation

Most of the information about the interface is correctly set up by the function
ether_setup. Ether net cards can rely on this general-purpose function for most of
these fields, but the flags and dev_addr fields are device specific and must be
explicitly assigned at initialization time.

Some non-Ethernet interfaces can use helper functions similar to ether_setup.
drivers/net/net_init.c exports a number of such functions, including the following:

436

22 June 2001 16:43

void ltalk_setup(struct net_device *dev);
Sets up the fields for a LocalTalk device.

void fc_setup(struct net_device *dev);
Initializes for fiber channel devices.

void fddi_setup(struct net_device *dev);
Configur es an interface for a Fiber Distributed Data Interface (FDDI) network.

void hippi_setup(struct net_device *dev);
Pr epar es fields for a High-Perfor mance Parallel Interface (HIPPI) high-speed
interconnect driver.

void tr_configure(struct net_device *dev);
Handles setup for token ring network interfaces. Note that the 2.4 kernel also
exports a function tr_setup, which, interestingly, does nothing at all.

Most devices will be covered by one of these classes. If yours is something radi-
cally new and differ ent, however, you will need to assign the following fields by
hand.

unsigned short hard_header_len;
The hardware header length, that is, the number of octets that lead the trans-
mitted packet before the IP header, or other protocol information. The value
of hard_header_len is 14 (ETH_HLEN) for Ethernet interfaces.

unsigned mtu;
The maximum transfer unit (MTU). This field is used by the network layer to
drive packet transmission. Ethernet has an MTU of 1500 octets
(ETH_DATA_LEN).

unsigned long tx_queue_len;
The maximum number of frames that can be queued on the device’s transmis-
sion queue. This value is set to 100 by ether_setup, but you can change it. For
example, plip uses 10 to avoid wasting system memory (plip has a lower
thr oughput than a real Ethernet interface).

unsigned short type;
The hardware type of the interface. The type field is used by ARP to deter-
mine what kind of hardware addr ess the interface supports. The proper value
for Ethernet interfaces is ARPHRD_ETHER, and that is the value set by
ether_setup. The recognized types are defined in <linux/if_arp.h>.

unsigned char addr_len;
unsigned char broadcast[MAX_ADDR_LEN];
unsigned char dev_addr[MAX_ADDR_LEN];

Hardwar e (MAC) address length and device hardware addr esses. The Ethernet
addr ess length is six octets (we are referring to the hardware ID of the

The net_device Structure in Detail

437

22 June 2001 16:43

Chapter 14: Network Drivers

inter face board), and the broadcast address is made up of six 0xff octets;
ether_setup arranges for these values to be correct. The device address, on the
other hand, must be read from the interface board in a device-specific way,
and the driver should copy it to dev_addr. The hardware addr ess is used to
generate correct Ethernet headers before the packet is handed over to the
driver for transmission. The snull device doesn’t use a physical interface, and
it invents its own hardware addr ess.

unsigned short flags;
Inter face flags, detailed next.

The flags field is a bit mask including the following bit values. The IFF_ pr efix
stands for “interface flags.” Some flags are managed by the kernel, and some are
set by the interface at initialization time to assert various capabilities and other fea-
tur es of the interface. The valid flags, which are defined in <linux/if.h>, are as
follows:

IFF_UP
This flag is read-only for the driver. The kernel turns it on when the interface
is active and ready to transfer packets.

IFF_BROADCAST
This flag states that the interface allows broadcasting. Ethernet boards do.

IFF_DEBUG
This marks debug mode. The flag can be used to control the verbosity of your
printk calls or for other debugging purposes. Although no official driver cur-
rently uses this flag, it can be set and reset by user programs via ioctl, and
your driver can use it. The misc-pr ogs/netifdebug pr ogram can be used to turn
the flag on and off.

IFF_LOOPBACK
This flag should be set only in the loopback interface. The kernel checks for
IFF_LOOPBACK instead of hardwiring the lo name as a special interface.

IFF_POINTOPOINT
This flag signals that the interface is connected to a point-to-point link. It is set
by ifconfig. For example, plip and the PPP driver have it set.

IFF_NOARP
This means that the interface can’t perfor m ARP. For example, point-to-point
inter faces don’t need to run ARP, which would only impose additional traffic
without retrieving useful information. snull runs without ARP capabilities, so
it sets the flag.

438

22 June 2001 16:43

IFF_PROMISC
This flag is set to activate promiscuous operation. By default, Ethernet inter-
faces use a hardware filter to ensure that they receive broadcast packets and
packets directed to that interface’s hardware addr ess only. Packet sniffers such
as tcpdump set promiscuous mode on the interface in order to retrieve all
packets that travel on the interface’s transmission medium.

IFF_MULTICAST
This flag is set by interfaces that are capable of multicast transmission.
ether_setup sets IFF_MULTICAST by default, so if your driver does not sup-
port multicast, it must clear the flag at initialization time.

IFF_ALLMULTI
This flag tells the interface to receive all multicast packets. The kernel sets it
when the host perfor ms multicast routing, only if IFF_MULTICAST is set.
IFF_ALLMULTI is read-only for the interface. We’ll see the multicast flags
used in “Multicasting” later in this chapter.

IFF_MASTER
IFF_SLAVE

These flags are used by the load equalization code. The interface driver
doesn’t need to know about them.

IFF_PORTSEL
IFF_AUTOMEDIA

These flags signal that the device is capable of switching between multiple
media types, for example, unshielded twisted pair (UTP) versus coaxial Ether-
net cables. If IFF_AUTOMEDIA is set, the device selects the proper medium
automatically.

IFF_DYNAMIC
This flag indicates that the address of this interface can change; used with
dialup devices.

IFF_RUNNING
This flag indicates that the interface is up and running. It is mostly present for
BSD compatibility; the kernel makes little use of it. Most network drivers need
not worry about IFF_RUNNING.

IFF_NOTRAILERS
This flag is unused in Linux, but it exists for BSD compatibility.

When a program changes IFF_UP, the open or stop device method is called.
When IFF_UP or any other flag is modified, the set_multicast_list method is
invoked. If the driver needs to perfor m some action because of a modification in
the flags, it must take that action in set_multicast_list. For example, when
IFF_PROMISC is set or reset, set_multicast_list must notify the onboard hardware
filter. The responsibilities of this device method are outlined in “Multicasting.”

The net_device Structure in Detail

439

22 June 2001 16:43

Chapter 14: Network Drivers

The device methods

As happens with the char and block drivers, each network device declares the
functions that act on it. Operations that can be perfor med on network interfaces
ar e listed in this section. Some of the operations can be left NULL, and some are
usually untouched because ether_setup assigns suitable methods to them.

Device methods for a network interface can be divided into two groups: funda-
mental and optional. Fundamental methods include those that are needed to be
able to use the interface; optional methods implement more advanced functionali-
ties that are not strictly requir ed. The following are the fundamental methods:

int (*open)(struct net_device *dev);
Opens the interface. The interface is opened whenever ifconfig activates it.
The open method should register any system resource it needs (I/O ports,
IRQ, DMA, etc.), turn on the hardware, and increment the module usage
count.

int (*stop)(struct net_device *dev);
Stops the interface. The interface is stopped when it is brought down; opera-
tions perfor med at open time should be reversed.

int (*hard_start_xmit) (struct sk_buff *skb, struct
net_device *dev);

This method initiates the transmission of a packet. The full packet (protocol
headers and all) is contained in a socket buffer (sk_buff) structur e. Socket
buf fers ar e intr oduced later in this chapter.

int (*hard_header) (struct sk_buff *skb, struct net_device
*dev, unsigned short type, void *daddr, void *saddr,
unsigned len);

This function builds the hardware header from the source and destination
hardwar e addr esses that were previously retrieved; its job is to organize the
infor mation passed to it as arguments into an appropriate, device-specific
hardwar e header. eth_header is the default function for Ethernet-like inter-
faces, and ether_setup assigns this field accordingly.

int (*rebuild_header)(struct sk_buff *skb);
This function is used to rebuild the hardware header before a packet is trans-
mitted. The default function used by Ethernet devices uses ARP to fill the
packet with missing information. The rebuild_header method is used rarely in
the 2.4 kernel; har d_header is used instead.

void (*tx_timeout)(struct net_device *dev);
This method is called when a packet transmission fails to complete within a
reasonable period, on the assumption that an interrupt has been missed or the
inter face has locked up. It should handle the problem and resume packet
transmission.

440

22 June 2001 16:43

struct net_device_stats *(*get_stats)(struct net_device
*dev);

Whenever an application needs to get statistics for the interface, this method is
called. This happens, for example, when ifconfig or netstat -i is run. A sample
implementation for snull is introduced in “Statistical Information” later in this
chapter.

int (*set_config)(struct net_device *dev, struct ifmap
*map);

Changes the interface configuration. This method is the entry point for config-
uring the driver. The I/O address for the device and its interrupt number can
be changed at runtime using set_config. This capability can be used by the
system administrator if the interface cannot be probed for. Drivers for modern
hardwar e nor mally do not need to implement this method.

The remaining device operations may be considered optional.

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr,
int cmd);

Per form inter face-specific ioctl commands. Implementation of those com-
mands is described later in “Custom ioctl Commands.” The corresponding field
in struct net_device can be left as NULL if the interface doesn’t need
any interface-specific commands.

void (*set_multicast_list)(struct net_device *dev);
This method is called when the multicast list for the device changes and when
the flags change. See “Multicasting” for further details and a sample implemen-
tation.

int (*set_mac_address)(struct net_device *dev, void *addr);
This function can be implemented if the interface supports the ability to
change its hardware addr ess. Many interfaces don’t support this ability at all.
Others use the default eth_mac_addr implementation (from
drivers/net/net_init.c). eth_mac_addr only copies the new address into
dev->dev_addr, and it will only do so if the interface is not running.
Drivers that use eth_mac_addr should set the hardware MAC address from
dev->dev_addr when they are configur ed.

int (*change_mtu)(struct net_device *dev, int new_mtu);
This function is in charge of taking action if there is a change in the MTU
(maximum transfer unit) for the interface. If the driver needs to do anything
particular when the MTU is changed, it should declare its own function; other-
wise, the default will do the right thing. snull has a template for the function if
you are inter ested.

The net_device Structure in Detail

441

22 June 2001 16:43

Chapter 14: Network Drivers

int (*header_cache) (struct neighbour *neigh, struct
hh_cache *hh);

header_cache is called to fill in the hh_cache structur e with the results of an
ARP query. Almost all drivers can use the default eth_header_cache implemen-
tation.

int (*header_cache_update) (struct hh_cache *hh, struct
net_device *dev, unsigned char *haddr);

This method updates the destination address in the hh_cache structur e in
response to a change. Ether net devices use eth_header_cache_update.

int (*hard_header_parse) (struct sk_buff *skb, unsigned char
*haddr);

The har d_header_parse method extracts the source address from the packet
contained in skb, copying it into the buffer at haddr. The retur n value from
the function is the length of that address. Ethernet devices normally use
eth_header_ parse.

Utility fields

The remaining struct net_device data fields are used by the interface to hold
useful status information. Some of the fields are used by ifconfig and netstat to
pr ovide the user with information about the current configuration. An interface
should thus assign values to these fields.

unsigned long trans_start;
unsigned long last_rx;

Both of these fields are meant to hold a jiffies value. The driver is responsible
for updating these values when transmission begins and when a packet is
received, respectively. The trans_start value is used by the networking
subsystem to detect transmitter lockups. last_rx is currently unused, but the
driver should maintain this field anyway to be prepar ed for future use.

int watchdog_timeo;
The minimum time (in jiffies) that should pass before the networking layer
decides that a transmission timeout has occurred and calls the driver’s tx_time-
out function.

void *priv;
The equivalent of filp->private_data. The driver owns this pointer and
can use it at will. Usually the private data structure includes a struct
net_device_stats item. The field is used in “Initializing Each Device,”
later in this chapter.

442

22 June 2001 16:43

struct dev_mc_list *mc_list;
int mc_count;

These two fields are used in handling multicast transmission. mc_count is
the count of items in mc_list. See “Multicasting” for further details.

spinlock_t xmit_lock;
int xmit_lock_owner;

The xmit_lock is used to avoid multiple simultaneous calls to the driver’s
har d_start_xmit function. xmit_lock_owner is the number of the CPU that
has obtained xmit_lock. The driver should make no changes to these fields.

struct module *owner;
The module that “owns” this device structure; it is used to maintain the use
count for the module.

Ther e ar e other fields in struct net_device, but they are not used by net-
work drivers.

Opening and Closing
Our driver can probe for the interface at module load time or at kernel boot.
Befor e the interface can carry packets, however, the kernel must open it and
assign an address to it. The kernel will open or close an interface in response to
the ifconfig command.

When ifconfig is used to assign an address to the interface, it perfor ms two tasks.
First, it assigns the address by means of ioctl(SIOCSIFADDR) (Socket I/O Con-
tr ol Set Interface Address). Then it sets the IFF_UP bit in dev->flag by means
of ioctl(SIOCSIFFLAGS) (Socket I/O Control Set Interface Flags) to turn the
inter face on.

As far as the device is concerned, ioctl(SIOCSIFADDR) does nothing. No
driver function is invoked—the task is device independent, and the kernel per-
for ms it. The latter command (ioctl(SIOCSIFFLAGS)), though, calls the open
method for the device.

Similarly, when the interface is shut down, ifconfig uses ioctl(SIOCSIFFLAGS)
to clear IFF_UP, and the stop method is called.

Both device methods retur n 0 in case of success and the usual negative value in
case of error.

As far as the actual code is concerned, the driver has to perfor m many of the same
tasks as the char and block drivers do. open requests any system resources it
needs and tells the interface to come up; stop shuts down the interface and
releases system resources. There are a couple of additional steps to be perfor med,
however.

Opening and Closing

443

22 June 2001 16:43

Chapter 14: Network Drivers

First, the hardware addr ess needs to be copied from the hardware device to
dev->dev_addr befor e the interface can communicate with the outside world.
The hardware addr ess can be assigned at probe time or at open time, at the
driver’s will. The snull softwar e inter face assigns it from within open; it just fakes a
hardwar e number using an ASCII string of length ETH_ALEN, the length of Ether-
net hardware addr esses.

The open method should also start the interface’s transmit queue (allow it to
accept packets for transmission) once it is ready to start sending data. The kernel
pr ovides a function to start the queue:

void netif_start_queue(struct net_device *dev);

The open code for snull looks like the following:

int snull_open(struct net_device *dev)
{

MOD_INC_USE_COUNT;

/* request_region(), request_irq(), (like fops->open) */

/*
* Assign the hardware address of the board: use "\0SNULx", where
* x is 0 or 1. The first byte is ’\0’ to avoid being a multicast
* address (the first byte of multicast addrs is odd).
*/

memcpy(dev->dev_addr, "\0SNUL0", ETH_ALEN);
dev->dev_addr[ETH_ALEN-1] += (dev - snull_devs); /* the number */

netif_start_queue(dev);
return 0;

}

As you can see, in the absence of real hardware, there is little to do in the open
method. The same is true of the stop method; it just reverses the operations of
open. For this reason the function implementing stop is often called close or
release.

int snull_release(struct net_device *dev)
{

/* release ports, irq and such -- like fops->close */

netif_stop_queue(dev); /* can’t transmit any more */
MOD_DEC_USE_COUNT;
return 0;

}

The function:

void netif_stop_queue(struct net_device *dev);

444

22 June 2001 16:43

is the opposite of netif_start_queue; it marks the device as being unable to trans-
mit any more packets. The function must be called when the interface is closed (in
the stop method) but can also be used to temporarily stop transmission, as
explained in the next section.

Packet Transmission
The most important tasks perfor med by network interfaces are data transmission
and reception. We’ll start with transmission because it is slightly easier to under-
stand.

Whenever the kernel needs to transmit a data packet, it calls the har d_start_trans-
mit method to put the data on an outgoing queue. Each packet handled by the
ker nel is contained in a socket buffer structure (struct sk_buff), whose defi-
nition is found in <linux/skbuff.h>. The structure gets its name from the Unix
abstraction used to repr esent a network connection, the socket. Even if the inter-
face has nothing to do with sockets, each network packet belongs to a socket in
the higher network layers, and the input/output buffers of any socket are lists of
struct sk_buff structur es. The same sk_buff structur e is used to host net-
work data throughout all the Linux network subsystems, but a socket buffer is just
a packet as far as the interface is concerned.

A pointer to sk_buff is usually called skb, and we follow this practice both in
the sample code and in the text.

The socket buffer is a complex structure, and the kernel offers a number of func-
tions to act on it. The functions are described later in “The Socket Buffers;” for
now a few basic facts about sk_buff ar e enough for us to write a working driver.

The socket buffer passed to har d_start_xmit contains the physical packet as it
should appear on the media, complete with the transmission-level headers. The
inter face doesn’t need to modify the data being transmitted. skb->data points to
the packet being transmitted, and skb->len is its length, in octets.

The snull packet transmission code is follows; the physical transmission machinery
has been isolated in another function because every interface driver must imple-
ment it according to the specific hardware being driven.

int snull_tx(struct sk_buff *skb, struct net_device *dev)
{

int len;
char *data;
struct snull_priv *priv = (struct snull_priv *) dev->priv;
len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
data = skb->data;
dev->trans_start = jiffies; /* save the timestamp */

/* Remember the skb, so we can free it at interrupt time */
priv->skb = skb;

Packet Transmission

445

22 June 2001 16:43

Chapter 14: Network Drivers

/* actual delivery of data is device specific, and not shown here */
snull_hw_tx(data, len, dev);

return 0; /* Our simple device cannot fail */
}

The transmission function thus perfor ms only some sanity checks on the packet
and transmits the data through the hardware-r elated function. That function
(snull_hw_tx) is omitted here since it is entirely occupied with implementing the
trickery of the snull device (including manipulating the source and destination
addr esses) and has little of interest to authors of real network drivers. It is present,
of course, in the sample source for those who want to go in and see how it works.

Controlling Transmission Concurrenc y
The har d_start_xmit function is protected from concurrent calls by a spinlock
(xmit_lock) in the net_device structur e. As soon as the function retur ns,
however, it may be called again. The function retur ns when the software is done
instructing the hardware about packet transmission, but hardware transmission will
likely not have been completed. This is not an issue with snull, which does all of
its work using the CPU, so packet transmission is complete before the transmission
function retur ns.

Real hardware inter faces, on the other hand, transmit packets asynchronously and
have a limited amount of memory available to store outgoing packets. When that
memory is exhausted (which, for some hardware, will happen with a single out-
standing packet to transmit), the driver will need to tell the networking system not
to start any more transmissions until the hardware is ready to accept new data.

This notification is accomplished by calling netif_stop_queue, the function intro-
duced earlier to stop the queue. Once your driver has stopped its queue, it must
arrange to restart the queue at some point in the future, when it is again able to
accept packets for transmission. To do so, it should call:

void netif_wake_queue(struct net_device *dev);

This function is just like netif_start_queue, except that it also pokes the network-
ing system to make it start transmitting packets again.

Most modern network interfaces maintain an internal queue with multiple packets
to transmit; in this way they can get the best perfor mance fr om the network. Net-
work drivers for these devices support having multiple transmisions outstanding at
any given time, but device memory can fill up whether or not the hardware sup-
ports multiple outstanding transmission. Whenever device memory fills to the
point that there is no room for the largest possible packet, the driver should stop
the queue until space becomes available again.

446

22 June 2001 16:43

Tr ansmission Timeouts
Most drivers that deal with real hardware have to be prepar ed for that hardware to
fail to respond occasionally. Interfaces can forget what they are doing, or the sys-
tem can lose an interrupt. This sort of problem is common with some devices
designed to run on personal computers.

Many drivers handle this problem by setting timers; if the operation has not com-
pleted by the time the timer expires, something is wrong. The network system, as
it happens, is essentially a complicated assembly of state machines controlled by a
mass of timers. As such, the networking code is in a good position to detect trans-
mission timeouts automatically.

Thus, network drivers need not worry about detecting such problems themselves.
Instead, they need only set a timeout period, which goes in the watch-
dog_timeo field of the net_device structur e. This period, which is in jiffies,
should be long enough to account for normal transmission delays (such as colli-
sions caused by congestion on the network media).

If the current system time exceeds the device’s trans_start time by at least the
timeout period, the networking layer will eventually call the driver’s tx_timeout
method. That method’s job is to do whatever is needed to clear up the problem
and to ensure the proper completion of any transmissions that were alr eady in
pr ogress. It is important, in particular, that the driver not lose track of any socket
buf fers that have been entrusted to it by the networking code.

snull has the ability to simulate transmitter lockups, which is controlled by two
load-time parameters:

static int lockup = 0;
MODULE_PARM(lockup, "i");

#ifdef HAVE_TX_TIMEOUT
static int timeout = SNULL_TIMEOUT;
MODULE_PARM(timeout, "i");
#endif

If the driver is loaded with the parameter lockup=n, a lockup will be simulated
once every n packets transmitted, and the watchdog_timeo field will be set to
the given timeout value. When simulating lockups, snull also calls
netif_stop_queue to prevent other transmission attempts from occurring.

The snull transmission timeout handler looks like this:

void snull_tx_timeout (struct net_device *dev)
{

struct snull_priv *priv = (struct snull_priv *) dev->priv;

PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
jiffies - dev->trans_start);

Packet Transmission

447

22 June 2001 16:43

Chapter 14: Network Drivers

priv->status = SNULL_TX_INTR;
snull_interrupt(0, dev, NULL);
priv->stats.tx_errors++;
netif_wake_queue(dev);
return;

}

When a transmission timeout happens, the driver must mark the error in the inter-
face statistics and arrange for the device to be reset to a sane state so that new
packets can be transmitted. When a timeout happens in snull, the driver calls
snull_interrupt to fill in the “missing” interrupt and restarts the transmit queue with
netif_wake_queue.

Packet Reception
Receiving data from the network is trickier than transmitting it because an
sk_buff must be allocated and handed off to the upper layers from within an
interrupt handler. The usual way to receive a packet is through an interrupt, unless
the interface is a purely software one like snull or the loopback interface.
Although it is possible to write polling drivers, and a few exist in the official ker-
nel, interrupt-driven operation is much better, both in terms of data throughput
and computational demands. Because most network interfaces are interrupt
driven, we won’t talk about the polling implementation, which just exploits kernel
timers.

The implementation of snull separates the “hardware” details from the device-
independent housekeeping. The function snull_rx is thus called after the hardware
has received the packet and it is already in the computer’s memory. snull_rx
receives a pointer to the data and the length of the packet; its sole responsibility is
to send the packet and some additional information to the upper layers of net-
working code. This code is independent of the way the data pointer and length
ar e obtained.

void snull_rx(struct net_device *dev, int len, unsigned char *buf)
{

struct sk_buff *skb;
struct snull_priv *priv = (struct snull_priv *) dev->priv;

/*
* The packet has been retrieved from the transmission
* medium. Build an skb around it, so upper layers can handle it
*/

skb = dev_alloc_skb(len+2);
if (!skb) {

printk("snull rx: low on mem - packet dropped\n");
priv->stats.rx_dropped++;
return;

}
memcpy(skb_put(skb, len), buf, len);

448

22 June 2001 16:43

/* Write metadata, and then pass to the receive level */
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don’t check it */
priv->stats.rx_packets++;
priv->stats.rx_bytes += len;
netif_rx(skb);
return;

}

The function is sufficiently general to act as a template for any network driver, but
some explanation is necessary before you can reuse this code fragment with confi-
dence.

The first step is to allocate a buffer to hold the packet. Note that the buffer alloca-
tion function (dev_alloc_skb) needs to know the data length. The information is
used by the function to allocate space for the buffer. dev_alloc_skb calls kmalloc
with atomic priority; it can thus be used safely at interrupt time. The kernel offers
other interfaces to socket-buffer allocation, but they are not worth introducing
her e; socket buffers are explained in detail in “The Socket Buffers,” later in this
chapter.

Once there is a valid skb pointer, the packet data is copied into the buffer by call-
ing memcpy; the skb_ put function updates the end-of-data pointer in the buffer
and retur ns a pointer to the newly created space.

If you are writing a high-perfor mance driver for an interface that can do full bus-
mastering I/O, there is a possible optimization that is worth considering here.
Some drivers allocate socket buffers for incoming packets prior to their reception,
then instruct the interface to place the packet data directly into the socket buffer’s
space. The networking layer cooperates with this strategy by allocating all socket
buf fers in DMA-capable space. Doing things this way avoids the need for a sepa-
rate copy operation to fill the socket buffer, but requir es being careful with buffer
sizes because you won’t know in advance how big the incoming packet is. The
implementation of a change_mtu method is also important in this situation, since it
allows the driver to respond to a change in the maximum packet size.

The network layer needs to have some information spelled out before it will be
able to make sense of the packet. To this end, the dev and protocol fields must
be assigned before the buffer is passed upstairs. Then we need to specify how
checksumming is to be perfor med or has been perfor med on the packet (snull
does not need to perfor m any checksums). The possible policies for
skb->ip_summed ar e as follows:

CHECKSUM_HW
The device has already perfor med checksums in hardware. An example of a
hardwar e checksum is the SPARC HME interface.

Packet Reception

449

22 June 2001 16:43

Chapter 14: Network Drivers

CHECKSUM_NONE
Checksums are still to be verified, and the task must be accomplished by sys-
tem software. This is the default in newly allocated buffers.

CHECKSUM_UNNECESSARY
Don’t do any checksums. This is the policy in snull and in the loopback inter-
face.

Finally, the driver updates its statistics counter to record that a packet has been
received. The statistics structure is made up of several fields; the most important
ar e rx_packets, rx_bytes, tx_packets, and tx_bytes, which contain the
number of packets received and transmitted and the total number of octets trans-
ferr ed. All the fields are thor oughly described in “Statistical Information” later in
this chpater.

The last step in packet reception is perfor med by netif_rx, which hands off the
socket buffer to the upper layers.

The Inter rupt Handler
Most hardware inter faces ar e contr olled by means of an interrupt handler. The
inter face interrupts the processor to signal one of two possible events: a new
packet has arrived or transmission of an outgoing packet is complete. This gener-
alization doesn’t always apply, but it does account for all the problems related to
asynchr onous packet transmission. Parallel Line Internet Protocol (PLIP) and Point-
to-Point Protocol (PPP) are examples of interfaces that don’t fit this generalization.
They deal with the same events, but the low-level interrupt handling is slightly dif-
fer ent.

The usual interrupt routine can tell the differ ence between a new-packet-arrived
interrupt and a done-transmitting notification by checking a status register found
on the physical device. The snull inter face works similarly, but its status word is
implemented in software and lives in dev->priv. The interrupt handler for a net-
work interface looks like this:

void snull_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

int statusword;
struct snull_priv *priv;
/*
* As usual, check the "device" pointer for shared handlers.
* Then assign "struct device *dev"
*/

struct net_device *dev = (struct net_device *)dev_id;
/* ... and check with hw if it’s really ours */

if (!dev /*paranoid*/) return;

/* Lock the device */

450

22 June 2001 16:43

priv = (struct snull_priv *) dev->priv;
spin_lock(&priv->lock);

/* retrieve statusword: real netdevices use I/O instructions */
statusword = priv->status;
if (statusword & SNULL_RX_INTR) {

/* send it to snull_rx for handling */
snull_rx(dev, priv->rx_packetlen, priv->rx_packetdata);

}
if (statusword & SNULL_TX_INTR) {

/* a transmission is over: free the skb */
priv->stats.tx_packets++;
priv->stats.tx_bytes += priv->tx_packetlen;
dev_kfree_skb(priv->skb);

}

/* Unlock the device and we are done */
spin_unlock(&priv->lock);
return;

}

The handler’s first task is to retrieve a pointer to the correct struct
net_device. This pointer usually comes from the dev_id pointer received as
an argument.

The interesting part of this handler deals with the “transmission done” situation. In
this case, the statistics are updated, and dev_kfr ee_skb is called to retur n the (no
longer needed) socket buffer to the system. If your driver has temporarily stopped
the transmission queue, this is the place to restart it with netif_wake_queue.

Packet reception, on the other hand, doesn’t need any special interrupt handling.
Calling snull_rx (which we have already seen) is all that’s requir ed.

Changes in Link State
Network connections, by definition, deal with the world outside the local system.
They are thus often affected by outside events, and they can be transient things.
The networking subsystem needs to know when network links go up or down,
and it provides a few functions that the driver may use to convey that information.

Most networking technologies involving an actual, physical connection provide a
carrier state; the presence of the carrier means that the hardware is present and
ready to function. Ethernet adapters, for example, sense the carrier signal on the
wir e; when a user trips over the cable, that carrier vanishes, and the link goes
down. By default, network devices are assumed to have a carrier signal present.
The driver can change that state explicitly, however, with these functions:

void netif_carrier_off(struct net_device *dev);
void netif_carrier_on(struct net_device *dev);

Changes in Link State

451

22 June 2001 16:43

Chapter 14: Network Drivers

If your driver detects a lack of carrier on one of its devices, it should call
netif_carrier_of f to inform the kernel of this change. When the carrier retur ns,
netif_carrier_on should be called. Some drivers also call netif_carrier_of f when
making major configuration changes (such as media type); once the adapter has
finished resetting itself, the new carrier will be detected and traffic can resume.

An integer function also exsists:

int netif_carrier_ok(struct net_device *dev);

This can be used to test the current carrier state (as reflected in the device struc-
tur e).

The Socket Buffers
We’ve now discussed most of the issues related to network interfaces. What’s still
missing is some more detailed discussion of the sk_buff structur e. The structure
is at the core of the network subsystem of the Linux kernel, and we now intro-
duce both the main fields of the structure and the functions used to act on it.

Although there is no strict need to understand the internals of sk_buff, the abil-
ity to look at its contents can be helpful when you are tracking down problems
and when you are trying to optimize the code. For example, if you look in loop-
back.c, you’ll find an optimization based on knowledge of the sk_buff inter nals.
The usual warning applies here: if you write code that takes advantage of knowl-
edge of the sk_buff structur e, you should be prepar ed to see it break with
futur e ker nel releases. Still, sometimes the perfor mance advantages justify the
additional maintenance cost.

We are not going to describe the whole structure her e, just the fields that might be
used from within a driver. If you want to see more, you can look at
<linux/skbuff.h>, wher e the structure is defined and the functions are proto-
typed. Additional details about how the fields and functions are used can be easily
retrieved by grepping in the kernel sources.

The Impor tant Fields
The fields introduced here are the ones a driver might need to access. They are
listed in no particular order.

struct net_device *rx_dev;
struct net_device *dev;

The devices receiving and sending this buffer, respectively.

452

22 June 2001 16:43

union { /* . . . */ } h;
union { /* . . . */ } nh;
union { /* . . . */} mac;

Pointers to the various levels of headers contained within the packet. Each
field of the unions is a pointer to a differ ent type of data structure. h hosts
pointers to transport layer headers (for example, struct tcphdr *th); nh
includes network layer headers (such as struct iphdr *iph); and mac
collects pointers to link layer headers (such as struct ethdr *ethernet).

If your driver needs to look at the source and destination addresses of a TCP
packet, it can find them in skb->h.th. See the header file for the full set of
header types that can be accessed in this way.

Note that network drivers are responsible for setting the mac pointer for
incoming packets. This task is normally handled by ether_type_trans, but non-
Ether net drivers will have to set skb->mac.raw dir ectly, as shown later in
“Non-Ether net Headers.”

unsigned char *head;
unsigned char *data;
unsigned char *tail;
unsigned char *end;

Pointers used to address the data in the packet. head points to the beginning
of the allocated space, data is the beginning of the valid octets (and is usu-
ally slightly greater than head), tail is the end of the valid octets, and end
points to the maximum address tail can reach. Another way to look at it is
that the available buf fer space is skb->end - skb->head, and the cur-
rently used data space is skb->tail - skb->data.

unsigned long len;
The length of the data itself (skb->tail - skb->data).

unsigned char ip_summed;
The checksum policy for this packet. The field is set by the driver on incom-
ing packets, as was described in “Packet Reception.”

unsigned char pkt_type;
Packet classification used in delivering it. The driver is responsible for setting
it to PACKET_HOST (this packet is for me), PACKET_BROADCAST,
PACKET_MULTICAST, or PACKET_OTHERHOST (no, this packet is not for
me). Ethernet drivers don’t modify pkt_type explicitly because
eth_type_trans does it for them.

The remaining fields in the structure are not particularly interesting. They are used
to maintain lists of buffers, to account for memory belonging to the socket that
owns the buffer, and so on.

The Socket Buffers

453

22 June 2001 16:43

Chapter 14: Network Drivers

Functions Acting on Socket Buffers
Network devices that use a sock_buff act on the structure by means of the offi-
cial interface functions. Many functions operate on socket buffers; here are the
most interesting ones:

struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);

Allocate a buffer. The alloc_skb function allocates a buffer and initializes both
skb->data and skb->tail to skb->head. The dev_alloc_skb function is a
shortcut that calls alloc_skb with GFP_ATOMIC priority and reserves some
space between skb->head and skb->data. This data space is used for
optimizations within the network layer and should not be touched by the
driver.

void kfree_skb(struct sk_buff *skb);
void dev_kfree_skb(struct sk_buff *skb);

Fr ee a buf fer. The kfr ee_skb call is used internally by the kernel. A driver
should use dev_kfr ee_skb instead, which is intended to be safe to call from
driver context.

unsigned char *skb_put(struct sk_buff *skb, int len);
unsigned char *__skb_put(struct sk_buff *skb, int len);

These inline functions update the tail and len fields of the sk_buff struc-
tur e; they are used to add data to the end of the buffer. Each function’s retur n
value is the previous value of skb->tail (in other words, it points to the
data space just created). Drivers can use the retur n value to copy data by
invoking ins(ioaddr, skb_put(. . .)) or
memcpy(skb_put(. . .), data, len). The differ ence between the two
functions is that skb_ put checks to be sure that the data will fit in the buffer,
wher eas _ _skb_ put omits the check.

unsigned char *skb_push(struct sk_buff *skb, int len);
unsigned char *__skb_push(struct sk_buff *skb, int len);

These functions decrement skb->data and increment skb->len. They are
similar to skb_ put, except that data is added to the beginning of the packet
instead of the end. The retur n value points to the data space just created. The
functions are used to add a hardware header before transmitting a packet.
Once again, _ _skb_ push dif fers in that it does not check for adequate avail-
able space.

int skb_tailroom(struct sk_buff *skb);
This function retur ns the amount of space available for putting data in the
buf fer. If a driver puts more data into the buffer than it can hold, the system
panics. Although you might object that a printk would be sufficient to tag the

454

22 June 2001 16:43

err or, memory corruption is so harmful to the system that the developers
decided to take definitive action. In practice, you shouldn’t need to check the
available space if the buffer has been correctly allocated. Since drivers usually
get the packet size before allocating a buffer, only a severely broken driver
will put too much data in the buffer, and a panic might be seen as due pun-
ishment.

int skb_headroom(struct sk_buff *skb);
Retur ns the amount of space available in front of data, that is, how many
octets one can “push” to the buffer.

void skb_reserve(struct sk_buff *skb, int len);
This function increments both data and tail. The function can be used to
reserve headroom before filling the buffer. Most Ethernet interfaces reserve 2
bytes in front of the packet; thus, the IP header is aligned on a 16-byte bound-
ary, after a 14-byte Ethernet header. snull does this as well, although the
instruction was not shown in “Packet Reception” to avoid introducing extra
concepts at that point.

unsigned char *skb_pull(struct sk_buff *skb, int len);
Removes data from the head of the packet. The driver won’t need to use this
function, but it is included here for completeness. It decrements skb->len
and increments skb->data; this is how the hardware header (Ethernet or
equivalent) is stripped from the beginning of incoming packets.

The kernel defines several other functions that act on socket buffers, but they are
meant to be used in higher layers of networking code, and the driver won’t need
them.

MAC Address Resolution
An interesting issue with Ethernet communication is how to associate the MAC
addr esses (the interface’s unique hardware ID) with the IP number. Most protocols
have a similar problem, but we concentrate on the Ethernet-like case here. We’ll
try to offer a complete description of the issue, so we will show three situations:
ARP, Ether net headers without ARP (like plip), and non-Ethernet headers.

Using ARP with Ethernet
The usual way to deal with address resolution is by using ARP, the Address Reso-
lution Protocol. Fortunately, ARP is managed by the kernel, and an Ethernet inter-
face doesn’t need to do anything special to support ARP. As long as dev->addr
and dev->addr_len ar e corr ectly assigned at open time, the driver doesn’t need
to worry about resolving IP numbers to physical addresses; ether_setup assigns the
corr ect device methods to dev->hard_header and dev->rebuild_header.

MAC Address Resolution

455

22 June 2001 16:43

Chapter 14: Network Drivers

Although the kernel normally handles the details of address resolution (and
caching of the results), it calls upon the interface driver to help in the building of
the packet. After all, the driver knows about the details of the physical layer
header, while the authors of the networking code have tried to insulate the rest of
the kernel from that knowledge. To this end, the kernel calls the driver’s
har d_header method to lay out the packet with the results of the ARP query. Nor-
mally, Ethernet driver writers need not know about this process — the common
Ether net code takes care of everything.

Over r iding ARP
Simple point-to-point network interfaces such as plip might benefit from using Eth-
er net headers, while avoiding the overhead of sending ARP packets back and
forth. The sample code in snull also falls into this class of network devices. snull
cannot use ARP because the driver changes IP addresses in packets being transmit-
ted, and ARP packets exchange IP addresses as well. Although we could have
implemented a simple ARP reply generator with little trouble, it is more illustrative
to show how to handle physical-layer headers directly.

If your device wants to use the usual hardware header without running ARP, you
need to override the default dev->hard_header method. This is how snull
implements it, as a very short function.

int snull_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned int len)

{
struct ethhdr *eth = (struct ethhdr *)skb_push(skb,ETH_HLEN);

eth->h_proto = htons(type);
memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, daddr ? daddr : dev->dev_addr, dev->addr_len);
eth->h_dest[ETH_ALEN-1] ˆ= 0x01; /* dest is us xor 1 */
return (dev->hard_header_len);

}

The function simply takes the information provided by the kernel and formats it
into a standard Ethernet header. It also toggles a bit in the destination Ethernet
addr ess, for reasons described later.

When a packet is received by the interface, the hardware header is used in a cou-
ple of ways by eth_type_trans. We have already seen this call in snull_rx:

skb->protocol = eth_type_trans(skb, dev);

The function extracts the protocol identifier (ETH_P_IP in this case) from the Eth-
er net header; it also assigns skb->mac.raw, removes the hardware header from

456

22 June 2001 16:43

packet data (with skb_ pull), and sets skb->pkt_type. This last item defaults to
PACKET_HOST at skb allocation (which indicates that the packet is directed to
this host), and eth_type_trans changes it according to the Ethernet destination
addr ess. If that address does not match the address of the interface that received it,
the pkt_type field will be set to PACKET_OTHERHOST. Subsequently, unless the
inter face is in promiscuous mode, netif_rx will drop any packet of type
PACKET_OTHERHOST. For this reason, snull_header is careful to make the desti-
nation hardware addr ess match that of the “receiving” interface.

If your interface is a point-to-point link, you won’t want to receive unexpected
multicast packets. To avoid this problem, remember that a destination address
whose first octet has 0 as the least significant bit (LSB) is directed to a single host
(i.e., it is either PACKET_HOST or PACKET_OTHERHOST). The plip driver uses
0xfc as the first octet of its hardware addr ess, while snull uses 0x00. Both
addr esses result in a working Ethernet-like point-to-point link.

Non-Ether net Header s
We have just seen that the hardware header contains some information in addition
to the destination address, the most important being the communication protocol.
We now describe how hardware headers can be used to encapsulate relevant
infor mation. If you need to know the details, you can extract them from the kernel
sources or the technical documentation for the particular transmission medium.
Most driver writers will be able to ignore this discussion and just use the Ethernet
implementation.

It’s worth noting that not all information has to be provided by every protocol. A
point-to-point link such as plip or snull could avoid transferring the whole Ether-
net header without losing generality. The har d_header device method, shown ear-
lier as implemented by snull_header, receives the delivery information — both
pr otocol-level and hardware addr esses—from the kernel. It also receives the 16-bit
pr otocol number in the type argument; IP, for example, is identified by
ETH_P_IP. The driver is expected to correctly deliver both the packet data and
the protocol number to the receiving host. A point-to-point link could omit
addr esses fr om its hardware header, transferring only the protocol number,
because delivery is guaranteed independent of the source and destination
addr esses. An IP-only link could even avoid transmitting any hardware header
whatsoever.

When the packet is picked up at the other end of the link, the receiving function
in the driver should correctly set the fields skb->protocol, skb->pkt_type,
and skb->mac.raw.

skb->mac.raw is a char pointer used by the address-r esolution mechanism
implemented in higher layers of the networking code (for instance, net/ipv4/arp.c).

MAC Address Resolution

457

22 June 2001 16:43

Chapter 14: Network Drivers

It must point to a machine address that matches dev->type. The possible values
for the device type are defined in <linux/if_arp.h>; Ether net inter faces use
ARPHRD_ETHER. For example, here is how eth_type_trans deals with the Ethernet
header for received packets:

skb->mac.raw = skb->data;
skb_pull(skb, dev->hard_header_len);

In the simplest case (a point-to-point link with no headers), skb->mac.raw can
point to a static buffer containing the hardware addr ess of this interface, proto-
col can be set to ETH_P_IP, and packet_type can be left with its default
value of PACKET_HOST.

Because every hardware type is unique, it is hard to give more specific advice
than already discussed. The kernel is full of examples, however. See, for example,
the AppleTalk driver (drivers/net/appletalk/cops.c), the infrared drivers (such as
drivers/net/ir da/smc_ircc.c), or the PPP driver (drivers/net/ppp_generic.c).

Custom ioctl Commands
We have seen that the ioctl system call is implemented for sockets; SIOCSIFADDR
and SIOCSIFMAP ar e examples of “socket ioctls.” Now let’s see how the third
argument of the system call is used by networking code.

When the ioctl system call is invoked on a socket, the command number is one of
the symbols defined in <linux/sockios.h>, and the function sock_ioctl
dir ectly invokes a protocol-specific function (where “pr otocol” refers to the main
network protocol being used, for example, IP or AppleTalk).

Any ioctl command that is not recognized by the protocol layer is passed to the
device layer. These device-related ioctl commands accept a third argument from
user space, a struct ifreq *. This structure is defined in <linux/if.h>.
The SIOCSIFADDR and SIOCSIFMAP commands actually work on the ifreq
structur e. The extra argument to SIOCSIFMAP, although defined as ifmap, is just
a field of ifreq.

In addition to using the standardized calls, each interface can define its own ioctl
commands. The plip inter face, for example, allows the interface to modify its inter-
nal timeout values via ioctl. The ioctl implementation for sockets recognizes 16
commands as private to the interface: SIOCDEVPRIVATE thr ough SIOCDEVPRI-
VATE+15.

When one of these commands is recognized, dev->do_ioctl is called in the rel-
evant interface driver. The function receives the same struct ifreq * pointer
that the general-purpose ioctl function uses:

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);

458

22 June 2001 16:43

The ifr pointer points to a kernel-space address that holds a copy of the struc-
tur e passed by the user. After do_ioctl retur ns, the structure is copied back to user
space; the driver can thus use the private commands to both receive and retur n
data.

The device-specific commands can choose to use the fields in struct ifreq,
but they already convey a standardized meaning, and it’s unlikely that the driver
can adapt the structure to its needs. The field ifr_data is a caddr_t item (a
pointer) that is meant to be used for device-specific needs. The driver and the pro-
gram used to invoke its ioctl commands should agree about the use of ifr_data.
For example, pppstats uses device-specific commands to retrieve information from
the ppp inter face driver.

It’s not worth showing an implementation of do_ioctl her e, but with the informa-
tion in this chapter and the kernel examples, you should be able to write one
when you need it. Note, however, that the plip implementation uses ifr_data
incorr ectly and should not be used as an example for an ioctl implementation.

Statistical Infor mation
The last method a driver needs is get_stats. This method retur ns a pointer to the
statistics for the device. Its implementation is pretty easy; the one shown works
even when several interfaces are managed by the same driver, because the statis-
tics are hosted within the device data structure.

struct net_device_stats *snull_stats(struct net_device *dev)
{

struct snull_priv *priv = (struct snull_priv *) dev->priv;
return &priv->stats;

}

The real work needed to retur n meaningful statistics is distributed throughout the
driver, wher e the various fields are updated. The following list shows the most
inter esting fields in struct net_device_stats.

unsigned long rx_packets;
unsigned long tx_packets;

These fields hold the total number of incoming and outgoing packets success-
fully transferred by the interface.

unsigned long rx_bytes;
unsigned long tx_bytes;

The number of bytes received and transmitted by the interface. These fields
wer e added in the 2.2 kernel.

Statistical Infor mation

459

22 June 2001 16:43

Chapter 14: Network Drivers

unsigned long rx_errors;
unsigned long tx_errors;

The number of erroneous receptions and transmissions. There’s no end of
things that can go wrong with packet transmission, and the
net_device_stats structur e includes six counters for specific receive
err ors and five for transmit errors. See <linux/netdevice.h> for the full
list. If possible, your driver should maintain detailed error statistics, because
they can be most helpful to system administrators trying to track down a prob-
lem.

unsigned long rx_dropped;
unsigned long tx_dropped;

The number of packets dropped during reception and transmission. Packets
ar e dr opped when there’s no memory available for packet data. tx_dropped
is rarely used.

unsigned long collisions;
The number of collisions due to congestion on the medium.

unsigned long multicast;
The number of multicast packets received.

It is worth repeating that the get_stats method can be called at any time—even
when the interface is down—so the driver should not release statistic information
when running the stop method.

Multicasting
A multicast packet is a network packet meant to be received by more than one
host, but not by all hosts. This functionality is obtained by assigning special hard-
war e addr esses to groups of hosts. Packets directed to one of the special addresses
should be received by all the hosts in that group. In the case of Ethernet, a multi-
cast address has the least significant bit of the first address octet set in the destina-
tion address, while every device board has that bit clear in its own hardware
addr ess.

The tricky part of dealing with host groups and hardware addr esses is perfor med
by applications and the kernel, and the interface driver doesn’t need to deal with
these problems.

Transmission of multicast packets is a simple problem because they look exactly
like any other packets. The interface transmits them over the communication
medium without looking at the destination address. It’s the kernel that has to
assign a correct hardware destination address; the har d_header device method, if
defined, doesn’t need to look in the data it arranges.

460

22 June 2001 16:43

The kernel handles the job of tracking which multicast addresses are of inter est at
any given time. The list can change frequently, since it is a function of the applica-
tions that are running at any given time and the user’s interest. It is the driver’s job
to accept the list of interesting multicast addresses and deliver to the kernel any
packets sent to those addresses. How the driver implements the multicast list is
somewhat dependent on how the underlying hardware works. Typically, hardware
belongs to one of three classes, as far as multicast is concerned:

• Inter faces that cannot deal with multicast. These interfaces either receive pack-
ets directed specifically to their hardware addr ess (plus broadcast packets), or
they receive every packet. They can receive multicast packets only by receiv-
ing every packet, thus potentially overwhelming the operating system with a
huge number of “uninteresting” packets. You don’t usually count these inter-
faces as multicast capable, and the driver won’t set IFF_MULTICAST in
dev->flags.

Point-to-point interfaces are a special case, because they always receive every
packet without perfor ming any hardware filtering.

• Inter faces that can tell multicast packets from other packets (host-to-host or
br oadcast). These interfaces can be instructed to receive every multicast
packet and let the software deter mine if this host is a valid recipient. The over-
head introduced in this case is acceptable, because the number of multicast
packets on a typical network is low.

• Inter faces that can perfor m hardwar e detection of multicast addresses. These
inter faces can be passed a list of multicast addresses for which packets are to
be received, and they will ignore other multicast packets. This is the optimum
case for the kernel, because it doesn’t waste processor time dropping “uninter-
esting” packets received by the interface.

The kernel tries to exploit the capabilities of high-level interfaces by supporting at
its best the third device class, which is the most versatile. Therefor e, the kernel
notifies the driver whenever the list of valid multicast addresses is changed, and it
passes the new list to the driver so it can update the hardware filter according to
the new information.

Kernel Support for Multicasting
Support for multicast packets is made up of several items: a device method, a data
structur e and device flags.

void (*dev->set_multicast_list)(struct net_device *dev);
This device method is called whenever the list of machine addresses associ-
ated with the device changes. It is also called when dev->flags is modified,
because some flags (e.g., IFF_PROMISC) may also requir e you to repr ogram
the hardware filter. The method receives a pointer to struct net_device
as an argument and retur ns void. A driver not interested in implementing this

Multicasting

461

22 June 2001 16:43

Chapter 14: Network Drivers

method can leave the field set to NULL.

struct dev_mc_list *dev->mc_list;
This is a linked list of all the multicast addresses associated with the device.
The actual definition of the structure is intr oduced at the end of this section.

int dev->mc_count;
The number of items in the linked list. This information is somewhat redun-
dant, but checking mc_count against 0 is a useful shortcut for checking the
list.

IFF_MULTICAST
Unless the driver sets this flag in dev->flags, the interface won’t be asked
to handle multicast packets. The set_multicast_list method will nonetheless be
called when dev->flags changes, because the multicast list may have
changed while the interface was not active.

IFF_ALLMULTI
This flag is set in dev->flags by the networking software to tell the driver
to retrieve all multicast packets from the network. This happens when multi-
cast routing is enabled. If the flag is set, dev->mc_list shouldn’t be used to
filter multicast packets.

IFF_PROMISC
This flag is set in dev->flags when the interface is put into promiscuous
mode. Every packet should be received by the interface, independent of
dev->mc_list.

The last bit of information needed by the driver developer is the definition of
struct dev_mc_list, which lives in <linux/netdevice.h>.

struct dev_mc_list {
struct dev_mc_list *next; /* Next address in list */
__u8 dmi_addr[MAX_ADDR_LEN]; /* Hardware address */
unsigned char dmi_addrlen; /* Address length */
int dmi_users; /* Number of users */
int dmi_gusers; /* Number of groups */

};

Because multicasting and hardware addr esses ar e independent of the actual trans-
mission of packets, this structure is portable across network implementations, and
each address is identified by a string of octets and a length, just like
dev->dev_addr.

A Typical Implementation
The best way to describe the design of set_multicast_list is to show you some
pseudocode.

462

22 June 2001 16:43

The following function is a typical implementation of the function in a full-fea-
tur ed (ff) driver. The driver is full featured in that the interface it controls has a
complex hardware packet filter, which can hold a table of multicast addresses to
be received by this host. The maximum size of the table is FF_TABLE_SIZE.

All the functions prefixed with ff_ ar e placeholders for hardware-specific opera-
tions.

void ff_set_multicast_list(struct net_device *dev)
{

struct dev_mc_list *mcptr;

if (dev->flags & IFF_PROMISC) {
ff_get_all_packets();
return;

}
/* If there’s more addresses than we handle, get all multicast
packets and sort them out in software. */
if (dev->flags & IFF_ALLMULTI || dev->mc_count > FF_TABLE_SIZE) {

ff_get_all_multicast_packets();
return;

}
/* No multicast? Just get our own stuff */
if (dev->mc_count == 0) {

ff_get_only_own_packets();
return;

}
/* Store all of the multicast addresses in the hardware filter */
ff_clear_mc_list();
for (mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next)

ff_store_mc_address(mc_ptr->dmi_addr);
ff_get_packets_in_multicast_list();

}

This implementation can be simplified if the interface cannot store a multicast
table in the hardware filter for incoming packets. In that case, FF_TABLE_SIZE
reduces to 0 and the last four lines of code are not needed.

As was mentioned earlier, even interfaces that can’t deal with multicast packets
need to implement the set_multicast_list method to be notified about changes in
dev->flags. This approach could be called a “nonfeatured” (nf) implementa-
tion. The implementation is very simple, as shown by the following code:

void nf_set_multicast_list(struct net_device *dev)
{

if (dev->flags & IFF_PROMISC)
nf_get_all_packets();

else
nf_get_only_own_packets();

}

Multicasting

463

22 June 2001 16:43

Chapter 14: Network Drivers

Implementing IFF_PROMISC is important, because otherwise the user won’t be
able to run tcpdump or any other network analyzers. If the interface runs a point-
to-point link, on the other hand, there’s no need to implement set_multicast_list at
all, because users receive every packet anyway.

Backward Compatibility
Version 2.3.43 of the kernel saw a major rework of the networking subsystem. The
new “softnet” implementation was a great improvement in terms of perfor mance
and clean design. It also, of course, brought changes to the network driver inter-
face — though fewer than one might have expected.

Differences in Linux 2.2
First of all, Linux 2.3.14 renamed the network device structure, which had always
been struct device, to struct net_device. The new name is certainly
mor e appr opriate, since the structure was never meant to describe devices in gen-
eral.

Prior to version 2.3.43, the functions netif_start_queue, netif_stop_queue, and
netif_wake_queue did not exist. Packet transmission was, instead, controlled by
thr ee fields in the device structur e, and sysdep.h implements the three functions
using the three fields when compiling for 2.2 or 2.0.

unsigned char start;
This variable indicated that the interface was ready for operations; it was nor-
mally set to 1 in the driver’s open method. The current implementation is to
call netif_start_queue instead.

unsigned long interrupt;
interrupt was used to indicate that the device was servicing an interrupt—
accordingly, it was set to 1 at the beginning of the interrupt handler and to 0
befor e retur ning. It was never a substitute for proper locking, and its use has
been replaced with internal spinlocks.

unsigned long tbusy;
When nonzero, this variable indicated that the device could handle no more
outgoing packets. Where a 2.4 driver will call netif_stop_queue, older drivers
would set tbusy to 1. Restarting the queue requir ed setting tbusy back to 0
and calling mark_bh(NET_BH).

Nor mally, setting tbusy was sufficient to ensure that the driver’s har d_start_xmit
method would not be called. However, if the networking system decided that a
transmitter lockup must have occurred, it would call that method anyway. There
was no tx_timeout method before softnet was integrated. Thus, pre-softnet drivers
had to explicitly check for a call to har d_start_xmit when tbusy was set and
react accordingly.

464

22 June 2001 16:43

The type of the name field in struct device was differ ent. The 2.2 version was
simply

char *name;

Thus, the storage for the interface name had to be allocated separately, and name
assigned to point to that storage. Usually the device name was stored in a static
variable within the driver. The %d notation for dynamically assigned interface
names was not present in 2.2; instead, if the name began with a null byte or a
space character, the kernel would allocate the next eth name. The 2.4 kernel still
implements this behavior, but its use is deprecated. Starting with 2.5, only the %d
for mat is likely to be recognized.

The owner field (and the SET_MODULE_OWNER macr o) wer e added in kernel
2.4.0-test11, just before the official stable release. Previously, network driver mod-
ules had to maintain their own use counts. sysdep.h defines an empty SET_MOD-
ULE_OWNER for kernels that do not have it; portable code should also continue to
manage its use count manually (in addition to letting the networking system do it).

The link state functions (netif_carrier_on and netif_carrier_of f) did not exist in the
2.2 kernel. The kernel simply did without that information in those days.

Fur ther Differences in Linux 2.0
The 2.1 development series also saw its share of changes to the network driver
inter face. Most took the form of small changes to function prototypes, rather than
sweeping changes to the network code as a whole.

Inter face statistics were kept in a structure called struct 1enet_statistics,
defined in <linux/if_ether.h>. Even non-Ethernet drivers used this structure.
The field names were all the same as the current struct net_device_stats,
but the rx_bytes and tx_bytes fields were not present.

The 2.0 kernel handled transmitter lockups in the same way as 2.2 did. There was,
however, an additional function:

void dev_tint(struct device *dev);

This function would be called by the driver after a lockup had been cleared to
restart the transmission of packets.

A couple of functions had differ ent pr ototypes. dev_kfr ee_skb had a second, inte-
ger argument that was either FREE_READ for incoming packets (i.e., skbs allo-
cated by the driver) or FREE_WRITE for outgoing packets (skbs allocated by the
networking code). Almost all calls to dev_kfr ee_skb in network driver code used
FREE_WRITE. The nonchecking versions of the skb functions (such as
_ _skb_ push) did not exist; sysdep.h in the sample code provides emulation for
these functions under 2.0.

Backward Compatibility

465

22 June 2001 16:43

Chapter 14: Network Drivers

The rebuild_header method had a differ ent set of arguments:

int (*rebuild_header) (void *eth, struct device *dev,
unsigned long raddr, struct sk_buff *skb);

The Linux kernel also made heavier use of rebuild_header; it did most of the work
that har d_header does now. When snull is compiled under Linux 2.0, it builds
hardwar e headers as follows:

int snull_rebuild_header(void *buff, struct net_device *dev, unsigned long dst,
struct sk_buff *skb)

{
struct ethhdr *eth = (struct ethhdr *)buff;

memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
memcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
eth->h_dest[ETH_ALEN-1] ˆ= 0x01; /* dest is us xor 1 */
return 0;

}

The device methods for header caching were also significantly differ ent in this ker-
nel. If your driver needs to implement these functions directly (very few do), and
it also needs to work with the 2.0 kernel, see the definitions in <linux/netde-
vice.h> to see how things were done in those days.

Probing and HAVE_DEVLIST
If you look at the source for almost any network driver in the kernel, you will find
some boilerplate that looks like this:

#ifdef HAVE_DEVLIST
/*
* Support for an alternate probe manager,
* which will eliminate the boilerplate below.
*/

struct netdev_entry netcard_drv =
{cardname, netcard_probe1, NETCARD_IO_EXTENT, netcard_portlist};
#else
/* Regular probe routine defined here */

Inter estingly, this code has been around since the 1.1 development series, but we
ar e still waiting for the promised alternate probe manager. It is probably safe to
not worry about being prepar ed for this great change, especially since ideas for
how to implement it will likely have changed in the intervening years.

466

22 June 2001 16:43

Quick Reference
This section provides a refer ence for the concepts introduced in this chapter. It
also explains the role of each header file that a driver needs to include. The lists of
fields in the net_device and sk_buff structur es, however, are not repeated
her e.

#include <linux/netdevice.h>
This header hosts the definitions of struct net_device and struct
net_device_stats, and includes a few other headers that are needed by
network drivers.

int register_netdev(struct net_device *dev);
void unregister_netdev(struct net_device *dev);

Register and unregister a network device.

SET_MODULE_OWNER(struct net_device *dev);
This macro will store a pointer to the current module in the device structure
(or in any structure with an owner field, actually); it is used to enable the net-
working subsystem to manage the module’s use count.

netif_start_queue(struct net_device *dev);
netif_stop_queue(struct net_device *dev);
netif_wake_queue(struct net_device *dev);

These functions control the passing of packets to the driver for transmission.
No packets will be transmitted until netif_start_queue has been called.
netif_stop_queue suspends transmission, and netif_wake_queue restarts the
queue and pokes the network layer to restart transmitting packets.

void netif_rx(struct sk_buff *skb);
This function can be called (including at interrupt time) to notify the kernel
that a packet has been received and encapsulated into a socket buffer.

#include <linux/if.h>
Included by netdevice.h, this file declares the interface flags (IFF_ macr os)
and struct ifmap, which has a major role in the ioctl implementation for
network drivers.

void netif_carrier_off(struct net_device *dev);
void netif_carrier_on(struct net_device *dev);
int netif_carrier_ok(struct net_device *dev);

The first two functions may be used to tell the kernel whether a carrier signal
is currently present on the given interface. netif_carrier_ok will test the carrier
state as reflected in the device structure.

Quick Reference

467

22 June 2001 16:43

Chapter 14: Network Drivers

#include <linux/if_ether.h>
ETH_ALEN
ETH_P_IP
struct ethhdr;

Included by netdevice.h, if_ether.h defines all the ETH_ macr os used to repr e-
sent octet lengths (such as the address length) and network protocols (such as
IP). It also defines the ethhdr structur e.

#include <linux/skbuff.h>
The definition of struct sk_buff and related structures, as well as several
inline functions to act on the buffers. This header is included by netdevice.h.

struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);
void kfree_skb(struct sk_buff *skb);
void dev_kfree_skb(struct sk_buff *skb);

These functions handle the allocation and freeing of socket buffers. Drivers
should normally use the dev_ variants, which are intended for that purpose.

unsigned char *skb_put(struct sk_buff *skb, int len);
unsigned char *__skb_put(struct sk_buff *skb, int len);
unsigned char *skb_push(struct sk_buff *skb, int len);
unsigned char *__skb_push(struct sk_buff *skb, int len);

These functions add data to an skb; skb_ put puts the data at the end of the
skb, while skb_ push puts it at the beginning. The regular versions perfor m
checking to ensure that adequate space is available; double-underscore ver-
sions leave those tests out.

int skb_headroom(struct sk_buff *skb);
int skb_tailroom(struct sk_buff *skb);
void skb_reserve(struct sk_buff *skb, int len);

These functions perfor m management of space within an skb. skb_headr oom
and skb_tailr oom tell how much space is available at the beginning and end,
respectively, of an skb. skb_r eserve may be used to reserve space at the
beginning of an skb, which must be empty.

unsigned char *skb_pull(struct sk_buff *skb, int len);
skb_ pull will “remove” data from an skb by adjusting the internal pointers.

#include <linux/etherdevice.h>
void ether_setup(struct net_device *dev);

This function sets most device methods to the general-purpose implementa-
tion for Ethernet drivers. It also sets dev->flags and assigns the next avail-
able ethx name to dev->name if the first character in the name is a blank
space or the null character.

468

22 June 2001 16:43

unsigned short eth_type_trans(struct sk_buff *skb, struct
net_device *dev);

When an Ethernet interface receives a packet, this function can be called to
set skb->pkt_type. The retur n value is a protocol number that is usually
stor ed in skb->protocol.

#include <linux/sockios.h>
SIOCDEVPRIVATE

This is the first of 16 ioctl commands that can be implemented by each driver
for its own private use. All the network ioctl commands are defined in sock-
ios.h.

Quick Reference

469

22 June 2001 16:43

