
CHAPTER ELEVEN

KMOD AND ADVANCED
MODULARIZATION

In this second part of the book, we discuss more advanced topics than we’ve seen
up to now. Once again, we start with modularization.

The introduction to modularization in Chapter 2 was only part of the story; the
ker nel and the modutils package support some advanced features that are mor e
complex than we needed earlier to get a basic driver up and running. The features
that we talk about in this chapter include the kmod pr ocess and version support
inside modules (a facility meant to save you from recompiling your modules each
time you upgrade your kernel). We also touch on how to run user-space helper
pr ograms fr om within kernel code.

The implementation of demand loading of modules has changed significantly over
time. This chapter discusses the 2.4 implementation, as usual. The sample code
works, as far as possible, on the 2.0 and 2.2 kernels as well; we cover the differ-
ences at the end of the chapter.

Loading Modules on Demand
To make it easier for users to load and unload modules, to avoid wasting kernel
memory by keeping drivers in core when they are not in use, and to allow the
cr eation of ‘‘generic’’ kernels that can support a wide variety of hardware, Linux
of fers support for automatic loading and unloading of modules. To exploit this fea-
tur e, you need to enable kmod support when you configure the kernel before you
compile it; most kernels from distributors come with kmod enabled. This ability to
request additional modules when they are needed is particularly useful for drivers
using module stacking.

The idea behind kmod is simple, yet effective. Whenever the kernel tries to access
certain types of resources and finds them unavailable, it makes a special kernel
call to the kmod subsystem instead of simply retur ning an error. If kmod succeeds
in making the resource available by loading one or more modules, the kernel

305

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

continues working; otherwise, it retur ns the error. Virtually any resource can be
requested this way: char and block drivers, filesystems, line disciplines, network
pr otocols, and so on.

One example of a driver that benefits from demand loading is the Advanced Linux
Sound Architectur e (ALSA) sound driver suite, which should (someday) replace the
curr ent sound implementation (Open Sound System, or OSS) in the Linux kernel.*
ALSA is split into many pieces. The set of core code that every system needs is
loaded first. Additional pieces get loaded depending on both the installed hard-
war e (which sound card is present) and the desired functionality (MIDI sequencer,
synthesizer, mixer, OSS compatibility, etc.). Thus, a large and complicated system
can be broken down into components, with only the necessary parts being actu-
ally present in the running system.

Another common use of automatic module loading is to make a ‘‘one size fits all’’
ker nel to package with distributions. Distributors want their kernels to support as
much hardware as possible. It is not possible, however, to simply configure in
every conceivable driver; the resulting kernel would be too large to load (and very
wasteful of system memory), and having that many drivers trying to probe for
hardwar e would be a near-certain way to create conflicts and confusion. With
automatic loading, the kernel can adapt itself to the hardware it finds on each indi-
vidual system.

Requesting Modules in the Ker nel
Any kernel-space code can request the loading of a module when needed, by
invoking a facility known as kmod. kmod was initially implemented as a separate,
standalone kernel process that handled module loading requests, but it has long
since been simplified by not requiring the separate process context. To use kmod,
you must include <linux/kmod.h> in your driver source.

To request the loading of a module, call request_module:

int request_module(const char *module_name);

The module_name can either be the name of a specific module file or the name
of a more generic capability; we’ll look more closely at module names in the next
section. The retur n value from request_module will be 0, or one of the usual nega-
tive error codes if something goes wrong.

Note that request_module is synchronous — it will sleep until the attempt to load
the module has completed. This means, of course, that request_module cannot be
called from interrupt context. Note also that a successful retur n fr om request_mod-
ule does not guarantee that the capability you were after is now available. The
retur n value indicates that request_module was successful in running modpr obe,

* The ALSA drivers can be found at www.alsa-pr oject.org.

306

22 June 2001 16:40

but does not reflect the success status of modpr obe itself. Any number of problems
or configuration errors can lead request_module to retur n a success status when it
has not loaded the module you needed.

Thus the proper usage of request_module usually requir es testing for the existence
of a needed capability twice:

if ((ptr = look_for_feature()) == NULL) {
/* if feature is missing, create request string */
sprintf(modname, "fmt-for-feature-%i\n", featureid);
request_module(modname); /* and try lo load it */

}
/* Check for existence of the feature again; error if missing */
if ((ptr = look_for_feature()) == NULL)

return -ENODEV;

The first check avoids redundant calls to request_module. If the feature is not
available in the running kernel, a request string is generated and request_module
is used to look for it. The final check makes sure that the requir ed featur e has
become available.

The User-Space Side
The actual task of loading a module requir es help from user space, for the simple
reason that it is far easier to implement the requir ed degr ee of configurability and
flexibility in that context. When the kernel code calls request_module, a new ‘‘ker-
nel thread’’ process is created, which runs a helper program in the user context.
This program is called modpr obe; we have seen it briefly earlier in this book.

modpr obe can do a great many things. In the simplest case, it just calls insmod
with the name of a module as passed to request_module. Ker nel code, however,
will often call request_module with a more abstract name repr esenting a needed
capability, such as scsi_hostadapter; modpr obe will then find and load the
corr ect module. modpr obe can also handle module dependencies; if a requested
module requir es yet another module to function, modpr obe will load both—
assuming that depmod -a was run after the modules have been installed.*

The modpr obe utility is configured by the file /etc/modules.conf.† See the mod-
ules.conf manpage for the full list of things that can appear in this file. Here is an
overview of the most common sorts of entries:

* Most distributions run depmod -a automatically at boot time, so you don’t need to worry
about that unless you installed new modules after you rebooted. See the modpr obe docu-
mentation for more details.

† On older systems, this file is often called /etc/conf.modules instead. That name still works,
but its use is deprecated.

Loading Modules on Demand

307

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

path[misc]=directory
This directive tells modpr obe that miscellaneous modules can be found in the
misc subdir ectory under the given directory. Other paths worth setting
include boot, which points to a directory of modules that should be loaded at
boot time, and toplevel, which gives a top-level directory under which a
tr ee of module subdirectories may be found. You almost certainly want to
include a separate keep dir ective as well.

keep
Nor mally, a path dir ective will cause modpr obe to discard all other paths
(including the defaults) that it may have known about. By placing a keep
befor e any path dir ectives, you can cause modpr obe to add new paths to the
list instead of replacing it.

alias alias_name real_name
Causes modpr obe to load the module real_name when asked to load
alias_name. The alias name usually identifies a specific capability; it has val-
ues such as scsi_hostadapter, eth0, or sound. This is the means by
which generic requests (‘‘a driver for the first Ethernet card’’) get mapped into
specific modules. Alias lines are usually created by the system installation pro-
cess; once it has figured out what hardware a specific system has, it generates
the appropriate alias entries to get the right drivers loaded.

options [-k] module opts
Pr ovides a set of options (opts) for the given module when it is loaded. If
the -k flag is provided, the module will not be automatically removed by a
modpr obe -r run.

pre-install module command
post-install module command
pre-remove module command
post-remove module command

The first two specify a command to be run either before or after the given
module is installed; the second two run the command before or after module
removal. These directives are useful for causing extra user-space processing to
happen or for running a requir ed daemon process. The command should be
given as a full pathname to avoid possible problems.

Note that, for the removal commands to be run, the module must be removed
with modpr obe. They will not be run if the module is removed with rmmod,
or if the system goes down (gracefully or otherwise).

modpr obe supports far more dir ectives than we have listed here, but the others are
generally only needed in complicated situations.

308

22 June 2001 16:40

A typical /etc/modules.conf looks like this:

alias scsi_hostadapter aic7xxx
alias eth0 eepro100
pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start
options short irq=1
alias sound es1370

This file tells modpr obe which drivers to load to make the SCSI system, Ethernet,
and sound cards work. It also ensures that if the PCMCIA drivers are loaded, a
startup script is invoked to run the card services daemon. Finally, an option is pro-
vided to be passed to the short driver.

Module Loading and Security
The loading of a module into the kernel has obvious security implications, since
the loaded code runs at the highest possible privilege level. For this reason, it is
important to be very careful in how you work with the module-loading system.

When editing the modules.conf file, one should always keep in mind that anybody
who can load kernel modules has complete control over the system. Thus, for
example, any directories added to the load path should be very carefully pro-
tected, as should the modules.conf file itself.

Note that insmod will normally refuse to load any modules that are not owned by
the root account; this behavior is an attempt at a defense against an attacker who
obtains write access to a module directory. You can override this check with an
option to insmod (or a modules.conf line), but doing so reduces the security of
your system.

One other thing to keep in mind is that the module name parameter that you pass
to request_module eventually ends up on the modpr obe command line. If that
module name is provided by a user-space program in any way, it must be very
car efully validated before being handed off to request_module. Consider, for
example, a system call that configures network interfaces. In response to an invo-
cation of ifconfig, this system call tells request_module to load the driver for the
(user-specified) interface. A hostile user can then carefully choose a fictitious inter-
face name that will cause modpr obe to do something improper. This is a real vul-
nerability that was discovered late in the 2.4.0-test development cycle; the worst
pr oblems have been cleaned up, but the system is still vulnerable to malicious
module names.

Module Loading Example
Let’s now try to use the demand-loading functions in practice. To this end, we’ll
use two modules called master and slave, found in the directory misc-modules in
the source files provided on the O’Reilly FTP site.

Loading Modules on Demand

309

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

In order to run this test code without installing the modules in the default module
search path, you can add something like the following lines to your /etc/mod-
ules.conf:

keep
path[misc]=˜rubini/driverBook/src/misc-modules

The slave module perfor ms no function; it just takes up space until removed. The
master module, on the other hand, looks like this:

#include <linux/kmod.h>
#include "sysdep.h"

int master_init_module(void)
{

int r[2]; /* results */

r[0]=request_module("slave");
r[1]=request_module("nonexistent");
printk(KERN_INFO "master: loading results are %i, %i\n", r[0],r[1]);
return 0; /* success */

}

void master_cleanup_module(void)
{ }

At load time, master tries to load two modules: the slave module and one that
doesn’t exist. The printk messages reach your system logs and possibly the con-
sole. This is what happens in a system configured for kmod support when the
daemon is active and the commands are issued on the text console:

morgana.root# depmod -a
morgana.root# insmod ./master.o
master: loading results are 0, 0
morgana.root# cat /proc/modules
slave 248 0 (autoclean)
master 740 0 (unused)
es1370 34832 1

Both the retur n value from request_module and the /pr oc/modules file (described
in ‘‘Initialization and Shutdown’’ in Chapter 2) show that the slave module has
been correctly loaded. Note, however, that the attempt to load nonexistent also
shows a successful retur n value. Because modpr obe was run, request_module
retur ns success, regardless of what happened to modpr obe.

A subsequent removal of master will produce results like the following:

morgana.root# rmmod master
morgana.root# cat /proc/modules
slave 248 0 (autoclean)
es1370 34832 1

310

22 June 2001 16:40

The slave module has been left behind in the kernel, where it will remain until the
next module cleanup pass is done (which is often never on modern systems).

Running User-Mode Helper Prog rams
As we have seen, the request_module function runs a program in user mode (i.e.,
running as a separate process, in an unprivileged processor mode, and in user
space) to help it get its job done. In the 2.3 development series, the kernel devel-
opers made the ‘‘run a user-mode helper’’ capability available to the rest of the
ker nel code. Should your driver need to run a user-mode program to support its
operations, this mechanism is the way to do it. Since it’s part of the kmod imple-
mentation, we’ll look at it here. If you are inter ested in this capability, a look at
ker nel/kmod.c is recommended; it’s not much code and illustrates nicely the use of
user-mode helpers.

The interface for running helper programs is fairly simple. As of kernel 2.4.0-test9,
ther e is a function call_user modehelper; it is used primarily by the hot-plug sub-
system (i.e., for USB devices and such) to perfor m module loading and configura-
tion tasks when a new device is attached to the system. Its prototype is:

int call_usermodehelper(char *path, char **argv, char **envp);

The arguments will be familiar: they are the name of the executable to run, argu-
ments to pass to it (argv[0], by convention, is the name of the program itself),
and the values of any environment variables. Both arrays must be terminated by
NULL values, just like with the execve system call. call_user modehelper will sleep
until the program has been started, at which point it retur ns the status of the oper-
ation.

Helper programs run in this mode are actually run as children of a kernel thread
called keventd. An important implication of this design is that there is no way for
your code to know when the helper program has finished or what its exit status is.
Running helper programs is thus a bit of an act of faith.

It is worth pointing out that truly legitimate uses of user-mode helper programs are
rar e. In most cases, it is better to set up a script to be run at module installation
time that does all needed work as part of loading the module rather than to wire
invocations of user-mode programs into kernel code. This sort of policy is best left
to the user whenever possible.

Inter module Communication
Very late in the pre-2.4.0 development series, the kernel developers added a new
inter face pr oviding limited communication between modules. This intermodule
scheme allows modules to register strings pointing to data of interest, which can
be retrieved by other modules. We’ll look briefly at this interface, using a variation
of our master and slave modules.

Inter module Communication

311

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

We use the same master module, but introduce a new slave module called inter.
All inter does is to make a string and a function available under the name
ime_string (ime means ‘‘intermodule example’’) and ime_function; it looks,
in its entirety, as follows:

static char *string = "inter says ’Hello World’";

void ime_function(const char *who)
{

printk(KERN_INFO "inter: ime_function called by %s\n", who);
}

int ime_init(void)
{

inter_module_register("ime_string", THIS_MODULE, string);
inter_module_register("ime_function", THIS_MODULE, ime_function);
return 0;

}

void ime_cleanup(void)
{

inter_module_unregister("ime_string");
inter_module_unregister("ime_function");

}

This code uses inter_module_r egister, which has this prototype:

void inter_module_register(const char *string, struct module *module,
const void *data);

string is the string other modules will use to find the data; module is a pointer
to the module owning the data, which will almost always be THIS_MODULE; and
data is a pointer to whatever data is to be shared. Note the use of a const
pointer for the data; it is assumed that it will be exported in a read-only mode.
inter_module_r egister will complain (via printk) if the given string is already
register ed.

When the data is no longer to be shared, the module should call inter_mod-
ule_unr egister to clean it up:

void inter_module_unregister(const char *string);

Two functions are exported that can access data shared via inter_module_r egister :

const void *inter_module_get(const char *string);
This function looks up the given string and retur ns the associated data
pointer. If the string has not been register ed, NULL is retur ned.

312

22 June 2001 16:40

const void *inter_module_get_request(const char *string,
const char *module);

This function is like inter_module_get with the added feature that, if the given
string is not found, it will call request_module with the given module name
and then will try again.

Both functions also increment the usage count for the module that register ed the
data. Thus, a pointer obtained with inter_module_get or inter_module_get_r equest
will remain valid until it is explicitly released. At least, the module that created that
pointer will not be unloaded during that time; it is still possible for the module
itself to do something that will invalidate the pointer.

When you are done with the pointer, you must release it so that the other mod-
ule’s usage count will be decremented properly. A simple call to

void inter_module_put(const char *string);

will release the pointer, which should not be used after this call.

In our sample master module, we call inter_module_get_r equest to cause the inter
module to be loaded and to obtain the two pointers. The string is simply printed,
and the function pointer is used to make a call from master into inter. The addi-
tional code in master looks like this:

static const char *ime_string = NULL;
static void master_test_inter();

void master_test_inter()
{

void (*ime_func)();
ime_string = inter_module_get_request("ime_string", "inter");
if (ime_string)

printk(KERN_INFO "master: got ime_string ’%s’\n", ime_string);
else

printk(KERN_INFO "master: inter_module_get failed");
ime_func = inter_module_get("ime_function");
if (ime_func) {

(*ime_func)("master");
inter_module_put("ime_function");

}
}

void master_cleanup_module(void)
{

if (ime_string)
inter_module_put("ime_string");

}

Note that one of the calls to inter_module_ put is deferred until module cleanup
time. This will cause the usage count of inter to be (at least) 1 until master is
unloaded.

Inter module Communication

313

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

Ther e ar e a few other worthwhile details to keep in mind when using the inter-
module functions. First, they are available even in kernels that have been config-
ur ed without support for loadable modules, so there is no need for a bunch of
#ifdef lines to test for that case. The namespace implemented by the intermod-
ule communication functions is global, so names should be chosen with care or
conflicts will result. Finally, intermodule data is stored in a simple linked list; per-
for mance will suffer if large numbers of lookups are made or many strings are
stor ed. This facility is intended for light use, not as a general dictionary subsystem.

Version Control in Modules
One of the main problems with modules is their version dependency, which was
intr oduced in Chapter 2. The need to recompile the module against the headers of
each kernel version being used can become a real pain when you run several cus-
tom modules, and recompiling is not even possible if you run a commercial mod-
ule distributed in binary form.

Fortunately, the kernel developers found a flexible way to deal with version prob-
lems. The idea is that a module is incompatible with a differ ent ker nel version
only if the software inter face of fered by the kernel has changed. The software
inter face, then, can be repr esented by a function prototype and the exact defini-
tion of all the data structures involved in the function call. Finally, a CRC
algorithm* can be used to map all the information about the software inter face to a
single 32-bit number.

The issue of version dependencies is thus handled by mangling the name of each
symbol exported by the kernel to include the checksum of all the information
related to that symbol. This information is obtained by parsing the header files and
extracting the information from them. This facility is optional and can be enabled
at compilation time. Modular kernels shipped by Linux distributors usually have
versioning support enabled.

For example, the symbol printk is exported to modules as something like
printk_R12345678 when version support is enabled, where 12345678 is the
hexadecimal repr esentation of the checksum of the software inter face used by the
function. When a module is loaded into the kernel, insmod (or modpr obe) can
accomplish its task only if the checksum added to each symbol in the kernel
matches the one added to the same symbol in the module.

Ther e ar e some limitations to this scheme. A common source of surprises has been
loading a module compiled for SMP systems into a uniprocessor kernel, or vice

* CRC means ‘‘cyclic redundancy check,’’ a way of generating a short, unique number from
an arbitrary amount of data.

314

22 June 2001 16:40

versa. Because numerous inline functions (e.g., spinlock operations) and symbols
ar e defined differ ently for SMP kernels, it is important that modules and the kernel
agr ee on whether they are built for SMP. Version 2.4 and recent 2.2 kernels throw
an extra smp_ string onto each symbol when compiling for SMP to catch this par-
ticular case. There are still potential traps, however. Modules and the kernel can
dif fer in which version of the compiler was used to build them, which view of
memory they take, which version of the processor they were built for, and more.
The version support scheme can catch the most common problems, but it still
pays to be careful.

But let’s see what happens in both the kernel and the module when version sup-
port is enabled:

• In the kernel itself, the symbol is not modified. The linking process happens
in the usual way, and the symbol table of the vmlinux file looks the same as
befor e.

• The public symbol table is built using the versioned names, and this is what
appears in /pr oc/ksyms.

• The module must be compiled using the mangled names, which appear in the
object files as undefined symbols.

• The loading program (insmod) matches the undefined symbols in the module
with the public symbols in the kernel, thus using the version information.

Note that the kernel and the module must both agree on whether versioning is in
use. If one is built for versioned symbols and the other isn’t, insmod will refuse to
load the module.

Using Ver sion Suppor t in Modules
Driver writers must add some explicit support if their modules are to work with
versioning. Version control can be inserted in one of two places: in the makefile or
in the source itself. Since the documentation of the modutils package describes
how to do it in the makefile, we’ll show you how to do it in the C source. The
master module used to demonstrate how kmod works is able to support versioned
symbols. The capability is automatically enabled if the kernel used to compile the
module exploits version support.

The main facility used to mangle symbol names is the header <linux/modver-
sions.h>, which includes prepr ocessor definitions for all the public kernel sym-
bols. This file is generated as part of the kernel compilation (actually, ‘‘make
depend’’) process; if your kernel has never been built, or is built without version
support, there will be little of interest inside. <linux/modversions.h> must be

Version Control in Modules

315

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

included before any other header file, so place it first if you put it directly in your
driver source. The usual technique, however, is to tell gcc to prepend the file with
a compilation command like:

gcc -DMODVERSIONS -include /usr/src/linux/include/linux/modversions.h...

After the header is included, whenever the module uses a kernel symbol, the com-
piler sees the mangled version.

To enable versioning in the module if it has been enabled in the kernel, we must
make sure that CONFIG_MODVERSIONS has been defined in <linux/con-
fig.h>. That header controls what features are enabled (compiled) in the current
ker nel. Each CONFIG_ macr o defined states that the corresponding option is
active.*

The initial part of master.c, ther efor e, consists of the following lines:

#include <linux/config.h> /* retrieve the CONFIG_* macros */
#if defined(CONFIG_MODVERSIONS) && !defined(MODVERSIONS)
define MODVERSIONS /* force it on */
#endif

#ifdef MODVERSIONS
include <linux/modversions.h>
#endif

When compiling the file against a versioned kernel, the symbol table in the object
file refers to versioned symbols, which match the ones exported by the kernel
itself. The following screendump shows the symbol names stored in master.o. In
the output of nm, T means ‘‘text,’’ D means ‘‘data,’’ and U means ‘‘undefined.’’ The
‘‘undefined’’ tag denotes symbols that the object file refer ences but doesn’t declare.

00000034 T cleanup_module
00000000 t gcc2_compiled.
00000000 T init_module
00000034 T master_cleanup_module
00000000 T master_init_module

U printk_Rsmp_1b7d4074
U request_module_Rsmp_27e4dc04

morgana% fgrep ’printk’ /proc/ksyms
c011b8b0 printk_Rsmp_1b7d4074

Because the checksums added to the symbol names in master.o ar e derived from
the entire prototypes of printk and request_module, the module is compatible with
a wide range of kernel versions. If, however, the data structures related to either
function get modified, insmod will refuse to load the module because of its incom-
patibility with the kernel.

* The CONFIG_ macr os ar e defined in <linux/autoconf.h>. You should, however,
include <linux/config.h> instead, because the latter is protected from double inclu-
sion, and sources <linux/autoconf.h> inter nally.

316

22 June 2001 16:40

Expor ting Versioned Symbols
The one thing not covered by the previous discussion is what happens when a
module exports symbols to be used by other modules. If we rely on version infor-
mation to achieve module portability, we’d like to be able to add a CRC code to
our own symbols. This subject is slightly trickier than just linking to the kernel,
because we need to export the mangled symbol name to other modules; we need
a way to build the checksums.

The task of parsing the header files and building the checksums is perfor med by
genksyms, a tool released with the modutils package. This program receives the
output of the C prepr ocessor on its own standard input and prints a new header
file on standard output. The output file defines the checksummed version of each
symbol exported by the original source file. The output of genksyms is usually
saved with a .ver suf fix; it is a good idea to stay consistent with this practice.

To show you how symbols are exported, we have created two dummy modules
called export.c and import.c. export exports a simple function called export_func-
tion, which is used by the second module, import.c. This function receives two
integer arguments and retur ns their sum—we are not interested in the function,
but rather in the linking process.

The makefile in the misc-modules dir ectory has a rule to build an export.ver file
fr om export.c, so that the checksummed symbol for export_function can be used
by the import module:

ifdef CONFIG_MODVERSIONS
export.o import.o: export.ver
endif

export.ver: export.c
$(CC) -I$(INCLUDEDIR) $(CFLAGS) -E -D__GENKSYMS_ _ $ˆ | \

$(GENKSYMS) -k 2.4.0 > $@

These lines demonstrate how to build export.ver and add it to the dependencies of
both object files, but only if MODVERSIONS is defined. A few lines added to Make-
file take care of defining MODVERSIONS if version support is enabled in the ker-
nel, but they are not worth showing here. The -k option must be used to tell
genksyms which version of the kernel you are working with. Its purpose is to
deter mine the format of the output file; it need not match the kernel you are using
exactly.

One thing that is worth showing, however, is the definition of the GKSMP symbol.
As mentioned above, a prefix (-p smp_) is added to every checksum if the kernel
is built for SMP systems. The genksyms utility does not add this prefix itself; it must
be told explicitly to do so. The following makefile code will cause the prefix to be
set appropriately:

Version Control in Modules

317

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

ifdef CONFIG_SMP
GENKSYMS += -p smp_

endif

The source file, then, must declare the right prepr ocessor symbols for every con-
ceivable prepr ocessor pass: the input to genksyms and the actual compilation, both
with version support enabled and with it disabled. Moreover, export.c should be
able to autodetect version support in the kernel, as master.c does. The following
lines show you how to do this successfully:

#include <linux/config.h> /* retrieve the CONFIG_* macros */
#if defined(CONFIG_MODVERSIONS) && !defined(MODVERSIONS)
define MODVERSIONS
#endif

/*
* Include the versioned definitions for both kernel symbols and our
* symbol, *unless* we are generating checksums (__GENKSYMS_ _
* defined) */

#if defined(MODVERSIONS) && !defined(__GENKSYMS_ _)
include <linux/modversions.h>
include "export.ver" /* redefine "export_function" to include CRC */
#endif

The code, though hairy, has the advantage of leaving the makefile in a clean state.
Passing the correct flags from make, on the other hand, involves writing long com-
mand lines for the various cases, which we won’t do here.

The simple import module calls export_function by passing the numbers 2 and 2
as arguments; the expected result is therefor e 4. The following example shows that
import actually links to the versioned symbol of export and calls the function. The
versioned symbol appears in /pr oc/ksyms.

morgana.root# insmod ./export.o
morgana.root# grep export /proc/ksyms
c883605c export_function_Rsmp_888cb211 [export]
morgana.root# insmod ./import.o
import: my mate tells that 2+2 = 4
morgana.root# cat /proc/modules
import 312 0 (unused)
export 620 0 [import]

Backward Compatibility
The demand-loading capability was entirely reimplemented in the 2.1 develop-
ment series. Fortunately, very few modules need to be aware of the change in any
way. For completeness, however, we will describe the old implementation here.

318

22 June 2001 16:40

In the 2.0 days, demand loading was handled by a separate, user-space daemon
pr ocess called ker neld. This process connected into the kernel via a special inter-
face and received module load (and unload) requests as they were generated by
ker nel code. There wer e numer ous disadvantages to this scheme, including the
fact that no modules could be loaded until the system initialization process had
gotten far enough to start ker neld.

The request_module function, however, remained unchanged, as did all aspects of
the modules themselves. It was, however, necessary to include <linux/ker-
neld.h> instead of <linux/kmod.h>.

Symbol versioning in the 2.0 kernel did not use the smp_ pr efix on SMP systems.
As a result, insmod would happily load an SMP module into a uniprocessor ker-
nel, or vice versa. The usual result of such a mismatch was extreme chaos.

The ability to run user-mode helper programs and the intermodule communication
mechanism did not exist until Linux 2.4.

Quick Reference
This chapter introduced the following kernel symbols.

/etc/modules.conf
This is the configuration file for modpr obe and depmod. It is used to configure
demand loading and is described in the manpages for the two programs.

#include <linux/kmod.h>
int request_module(const char *name);

This function perfor ms demand loading of modules.

void inter_module_register(const char *string, struct module
*module, const void *data);

void inter_module_unregister(const char *);
inter_module_r egister makes data available to other modules via the inter-
module communication system. When the data is no longer to be shared,
inter_module_unr egister will end that availability.

const void *inter_module_get(const char *string);
const void *inter_module_get_request(const char *string,

const char *module);
void inter_module_put(const char *string);

The first two functions look up a string in the intermodule communication sys-
tem; inter_module_get_r equest also attempts to load the given module if the
string is not found. Both increment the usage count of the module that
exported the string; inter_module_ put should be called to decrement it when
the data pointer is no longer needed.

Quick Reference

319

22 June 2001 16:40

Chapter 11: kmod and Advanced Modularization

#include <linux/config.h>
CONFIG_MODVERSIONS

This macro is defined only if the current kernel has been compiled to support
versioned symbols.

#ifdef MODVERSIONS
#include <linux/modversions.h>

This header, which exists only if CONFIG_MODVERSIONS is valid, contains
the versioned names for all the symbols exported by the kernel.

__GENKSYMS_ _
This macro is defined by make when prepr ocessing files to be read by
genksyms to build new version codes. It is used to conditionally prevent inclu-
sion of <linux/modversions.h> when building new checksums.

int call_usermodehelper(char *path, char *argv[], char
*envp[]);

This function runs a user-mode program in the keventd pr ocess context.

320

22 June 2001 16:40

