22 June 2001 16:39

CHAPTER NINE

INTERRUPT HANDLING

Although some devices can be controlled using nothing but their I/O regions,
most real-world devices are a bit more complicated than that. Devices have to deal
with the external world, which often includes things such as spinning disks, mov-
ing tape, wires to distant places, and so on. Much has to be done in a time frame
that is different, and slower, than that of the processor. Since it is almost always
undesirable to have the processor wait on external events, there must be a way for
a device to let the processor know when something has happened.

That way, of course, is interrupts. An interrupt is simply a signal that the hardware
can send when it wants the processor’s attention. Linux handles interrupts in much
the same way that it handles signals in user space. For the most part, a driver need
only register a handler for its device’s interrupts, and handle them properly when
they arrive. Of course, underneath that simple picture there is some complexity; in
particular, interrupt handlers are somewhat limited in the actions they can perform
as a result of how they are run.

It is difficult to demonstrate the use of interrupts without a real hardware device to
generate them. Thus, the sample code used in this chapter works with the parallel
port. We'll be working with the short module from the previous chapter; with
some small additions it can generate and handle interrupts from the parallel port.
The module’s name, short, actually means short int (it is C, isn’t it?), to remind us
that it handles inferrupts.

Overall Control of Interrupts

The way that Linux handles interrupts has changed quite a bit over the years, due
to changes in design and in the hardware it works with. The PC’s view of inter-
rupts in the early days was quite simple; there were just 16 interrupt lines and one

251

22 June 2001 16:39

Chapter 9: Interrupt Handling

processor to deal with them. Modern hardware can have many more interrupts,
and can also be equipped with fancy advanced programmable interrupt controllers
(APICs), which can distribute interrupts across multiple processors in an intelligent
(and programmable) way.

Happily, Linux has been able to deal with all of these changes with relatively few
incompatibilities at the driver level. Thus, the interface described in this chapter
works, with few differences, across many kernel versions. Sometimes things do
work out nicely.

Unix-like systems have used the functions c¢/i and sti to disable and enable inter-
rupts for many years. In modern Linux systems, however, using them directly is
discouraged. It is increasingly impossible for any routine to know whether inter-
rupts are enabled when it is called; thus, simply enabling interrupts with sti before
return is a bad practice. Your function may be returning to a function that expects
interrupts to be still disabled.

Thus, if you must disable interrupts, it is better to use the following calls:

unsigned long flags;

save_flags(flags) ;
cli();

/* This code runs with interrupts disabled */

restore_flags (flags);

Note that save_flags is a macro, and that it is passed the variable to hold the flags
directly—without an & operator. There is also an important constraint on the use
of these macros: save_flags and restore_flags must be called from the same func-
tion. In other words, you cannot pass the flags to another function, unless the
other function is inlined. Code that ignores this restriction will work on some
architectures but will fail on others.

Increasingly, however, even code like the previous example is discouraged wher-
ever possible. In a multiprocessor system, critical code cannot be protected just by
disabling interrupts; some sort of locking mechanism must be used. Functions
such as spin_lock_irgsave (covered in “Using Spinlocks,” later in this chapter) pro-
vide locking and interrupt control together; these functions are the only really safe
way to control concurrency in the presence of interrupts.

cli, meanwhile, disables interrupts on all processors on the system, and can thus
affect the performance of the system as a whole.*

* The truth is just a little more complicated than this. If you are already handling an inter-
rupt, cli only disables interrupts on the current CPU.

252

22 June 2001 16:39

Installing an Interrupt Handler

Thus, explicit calls to c/i and related functions are slowly disappearing from much
of the kernel. There are occasions where you need them in a device driver, but
they are rare. Before calling c/i, think about whether you really need to disable all
interrupts on the system.

Preparing the Parallel Port

Although the parallel interface is simple, it can trigger interrupts. This capability is
used by the printer to notify the /p driver that it is ready to accept the next charac-
ter in the buffer.

Like most devices, the parallel port doesn’t actually generate interrupts before it’s
instructed to do so; the parallel standard states that setting bit 4 of port 2 (0x37a,
0x27a, or whatever) enables interrupt reporting. A simple outb call to set the bit
is performed by short at module initialization.

Once interrupts are enabled, the parallel interface generates an interrupt whenever
the electrical signal at pin 10 (the so-called ACK bit) changes from low to high.
The simplest way to force the interface to generate interrupts (short of hooking up
a printer to the port) is to connect pins 9 and 10 of the parallel connector. A short
length of wire inserted into the appropriate holes in the parallel port connector on
the back of your system will create this connection. The pinout of the parallel port
is shown in Figure 8-1.

Pin 9 is the most significant bit of the parallel data byte. If you write binary data to
/dev/short0, you’ll generate several interrupts. Writing ASCII text to the port won’t
generate interrupts, though, because the most significant bit won’t be set.

If you’d rather avoid soldering, but you do have a printer at hand, you can run the
sample interrupt handler using a real printer, as shown later. Note, however, that
the probing functions we are going to introduce depend on the jumper between
pin 9 and 10 being in place, and you'll need it to experiment with probing using
our code.

Installing an Interrupt Handler

If you want to actually “see” interrupts being generated, writing to the hardware
device isn’t enough; a software handler must be configured in the system. If the
Linux kernel hasn’t been told to expect your interrupt, it will simply acknowledge
and ignore it.

Interrupt lines are a precious and often limited resource, particularly when there
are only 15 or 16 of them. The kernel keeps a registry of interrupt lines, similar to
the registry of I/O ports. A module is expected to request an interrupt channel (or
IRQ, for interrupt request) before using it, and to release it when it's done. In

253

22 June 2001 16:39

Chapter 9: Interrupt Handling

many situations, modules are also expected to be able to share interrupt lines with
other drivers, as we will see. The following functions, declared in
<linux/sched.h>, implement the interface:

int request_irg(unsigned int irq,
void (*handler) (int, void *, struct pt_regs *),
unsigned long flags,
const char *dev_name,
void *dev_id);

void free_irg(unsigned int irqg, void *dev_id);

The value returned from request_irg to the requesting function is either 0 to indi-
cate success or a negative error code, as usual. It’s not uncommon for the function
to return —EBUSY to signal that another driver is already using the requested inter-
rupt line. The arguments to the functions are as follows:

unsigned int irg
This is the interrupt number being requested.

void (*handler) (int, void *, struct pt_regs *)
The pointer to the handling function being installed. We’ll discuss the argu-
ments to this function later in this chapter.

unsigned long flags
As you might expect, a bit mask of options (described later) related to inter-
rupt management.

const char *dev_name
The string passed to request_irq is used in /proc/interrupts to show the owner
of the interrupt (see the next section).

void *dev_id
This pointer is used for shared interrupt lines. It is a unique identifier that is
used when the interrupt line is freed and that may also be used by the driver
to point to its own private data area (to identify which device is interrupting).
When no sharing is in force, dev_id can be set to NULL, but it a good idea
anyway to use this item to point to the device structure. We'll see a practical
use for dev_id in “Implementing a Handler,” later in this chapter.

The bits that can be set in £lags are as follows:

SA_INTERRUPT
When set, this indicates a “fast” interrupt handler. Fast handlers are executed
with interrupts disabled (the topic is covered in deeper detail later in this
chapter, in “Fast and Slow Handlers”).

254

22 June 2001 16:39

Installing an Interrupt Handler

SA_SHIRQ
This bit signals that the interrupt can be shared between devices. The concept
of sharing is outlined in “Interrupt Sharing,” later in this chapter.

SA_SAMPLE_RANDOM

This bit indicates that the generated interrupts can contribute to the entropy
pool used by /dev/random and /dev/urandom. These devices return truly ran-
dom numbers when read and are designed to help application software
choose secure keys for encryption. Such random numbers are extracted from
an entropy pool that is contributed by various random events. If your device
generates interrupts at truly random times, you should set this flag. If, on the
other hand, your interrupts will be predictable (for example, vertical blanking
of a frame grabber), the flag is not worth setting—it wouldn’t contribute to
system entropy anyway. Devices that could be influenced by attackers should
not set this flag; for example, network drivers can be subjected to predictable
packet timing from outside and should not contribute to the entropy pool. See
the comments in drivers/char/random.c for more information.

The interrupt handler can be installed either at driver initialization or when the
device is first opened. Although installing the interrupt handler from within the
module’s initialization function might sound like a good idea, it actually isn't.
Because the number of interrupt lines is limited, you don’t want to waste them.
You can easily end up with more devices in your computer than there are inter-
rupts. If a module requests an IRQ at initialization, it prevents any other driver
from using the interrupt, even if the device holding it is never used. Requesting
the interrupt at device open, on the other hand, allows some sharing of resources.

It is possible, for example, to run a frame grabber on the same interrupt as a
modem, as long as you don’t use the two devices at the same time. It is quite
common for users to load the module for a special device at system boot, even if
the device is rarely used. A data acquisition gadget might use the same interrupt as
the second serial port. While it’s not too hard to avoid connecting to your Internet
service provider (ISP) during data acquisition, being forced to unload a module in
order to use the modem is really unpleasant.

The correct place to call request_irg is when the device is first opened, before the
hardware is instructed to generate interrupts. The place to call free_irq is the last
time the device is closed, after the hardware is told not to interrupt the processor
any more. The disadvantage of this technique is that you need to keep a per-
device open count. Using the module count isn’t enough if you control two or
more devices from the same module.

This discussion notwithstanding, short requests its interrupt line at load time. This
was done so that you can run the test programs without having to run an extra
process to keep the device open. short, therefore, requests the interrupt from
within its initialization function (short_inif) instead of doing it in short_open, as a
real device driver would.

255

22 June 2001 16:39

Chapter 9: Interrupt Handling

The interrupt requested by the following code is short_irqg. The actual assign-
ment of the variable (i.e., determining which TRQ to use) is shown later, since it is
not relevant to the current discussion. short_base is the base I/O address of the
parallel interface being used; register 2 of the interface is written to enable inter-
rupt reporting.

if (short_irqg >= 0) {
result = request_irg(short_irqg, short_interrupt,
SA_INTERRUPT, "short", NULL) ;
if (result) {
printk (KERN_INFO "short: can’t get assigned irg %i\n",
short_irq) ;
short_irg = -1;
}
else { /* actually enable it -- assume this *is* a parallel port */
outb (0x10, short_base+2) ;

}

The code shows that the handler being installed is a fast handler (SA_INTER-
RUPT), does not support interrupt sharing (SA_SHIRQ is missing), and doesn’t
contribute to system entropy (SA_SAMPLE_RANDOM is missing too). The outb call
then enables interrupt reporting for the parallel port.

The /proc Interface

Whenever a hardware interrupt reaches the processor, an internal counter is incre-
mented, providing a way to check whether the device is working as expected.
Reported interrupts are shown in /proc/interrupts. The following snapshot was
taken after several days of uptime on a two-processor Pentium system:

CPUO CPU1
0 34584323 34936135 IO-APIC-edge timer
1 224407 226473 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
5: 5636751 5636666 IO-APIC-level ethO
9: 0 0 I0-APIC-level acpi
10: 565910 565269 IO-APIC-level aic7xxx
12: 889091 884276 TIO-APIC-edge PS/2 Mouse
13: 1 0 XT-PIC fpu
15: 1759669 1734520 IO-APIC-edge idel
NMI: 69520392 69520392
LOC: 69513717 69513716
ERR: 0

The first column is the IRQ number. You can see from the IRQs that are missing
that the file shows only interrupts corresponding to installed handlers. For exam-
ple, the first serial port (which uses interrupt number 4) is not shown, indicating

256

22 June 2001 16:39

Installing an Interrupt Handler

that the modem isn’t being used. In fact, even if the modem had been used earlier
but wasn’t in use at the time of the snapshot, it would not show up in the file; the
serial ports are well behaved and release their interrupt handlers when the device
is closed.

The /proc/interrupts display shows how many interrupts have been delivered to
each CPU on the system. As you can see from the output, the Linux kernel tries to
divide interrupt traffic evenly across the processors, with some success. The final
columns give information on the programmable interrupt controller that handles
the interrupt (and which a driver writer need not worry about), and the name(s) of
the device(s) that have registered handlers for the interrupt (as specified in the
dev_name argument to request_irg).

The /proc tree contains another interrupt-related file, /proc/stat; sometimes you’ll
find one file more useful and sometimes you'll prefer the other. /proc/stat records
several low-level statistics about system activity, including (but not limited to) the
number of interrupts received since system boot. Each line of stat begins with a
text string that is the key to the line; the intr mark is what we are looking for.
The following (truncated and line-broken) snapshot was taken shortly after the
previous one:

intr 884865 695557 4527 0 3109 4907 112759 3 0 0 0 11314
0 17747 1 0 34941 0 0 0 0 00O

The first number is the total of all interrupts, while each of the others represents a
single IRQ line, starting with interrupt 0. This snapshot shows that interrupt num-
ber 4 has been used 4907 times, even though no handler is currently installed. If
the driver you're testing acquires and releases the interrupt at each open and close
cycle, you may find /proc/stat more useful than /proc/interrupts.

Another difference between the two files is that interrupts is not architecture
dependent, whereas stat is: the number of fields depends on the hardware under-
lying the kernel. The number of available interrupts varies from as few as 15 on
the SPARC to as many as 256 on the IA-64 and a few other systems. It’s interesting
to note that the number of interrupts defined on the x86 is currently 224, not 16 as
you may expect; this, as explained in include/asm-i386/irq.h, depends on Linux
using the architectural limit instead of an implementation-specific limit (like the 16
interrupt sources of the old-fashioned PC interrupt controller).

The following is a snapshot of /proc/interrupts taken on an IA-64 system. As you

can see, besides different hardware routing of common interrupt sources, there’s
no platform dependency here.

CPUO CPU1
27: 1705 34141 TIO-SAPIC-level glal280
40: 0 0 SAPIC perfmon
43: 913 6960 TIO-SAPIC-level ethO
47 26722 146 TIO-SAPIC-level wusb-uhci
64: 3 6 IO-SAPIC-edge ideO0

257

22 June 2001 16:39

Chapter 9: Interrupt Handling

80: 4 2 IO-SAPIC-edge keyboard
89: 0 0 IO-SAPIC-edge PS/2 Mouse
239: 5606341 5606052 SAPIC timer
254: 67575 52815 SAPIC IPI
NMI: 0 0
ERR: 0

Autodetecting the IRQ Number

One of the most compelling problems for a driver at initialization time can be how
to determine which IRQ line is going to be used by the device. The driver needs
the information in order to correctly install the handler. Even though a program-
mer could require the user to specify the interrupt number at load time, this is a
bad practice because most of the time the user doesn’t know the number, either
because he didn’t configure the jumpers or because the device is jumperless.
Autodetection of the interrupt number is a basic requirement for driver usability.

Sometimes autodetection depends on the knowledge that some devices feature a
default behavior that rarely, if ever, changes. In this case, the driver might assume
that the default values apply. This is exactly how short behaves by default with the
parallel port. The implementation is straightforward, as shown by short itself:

if (short_irg < 0) /* not yet specified: force the default on */
switch(short_base) {
case 0x378: short_irg = 7
case 0x278: short_irg = 2; break;
case 0x3bc: short_irg = 5

}

The code assigns the interrupt number according to the chosen base I/O address,
while allowing the user to override the default at load time with something like

insmod ./short.o short_irg=x.
short_base defaults to 0x378, so short_irg defaults to 7.

Some devices are more advanced in design and simply “announce” which inter-
rupt they’re going to use. In this case, the driver retrieves the interrupt number by
reading a status byte from one of the device’s I/O ports or PCI configuration
space. When the target device is one that has the ability to tell the driver which
interrupt it is going to use, autodetecting the IRQ number just means probing the
device, with no additional work required to probe the interrupt.

It's interesting to note here that modern devices supply their interrupt configura-
tion. The PCI standard solves the problem by requiring peripheral devices to
declare what interrupt line(s) they are going to use. The PCI standard is discussed
in Chapter 15.

258

Installing an Interrupt Handler

Unfortunately, not every device is programmer friendly, and autodetection might
require some probing. The technique is quite simple: the driver tells the device to
generate interrupts and watches what happens. If everything goes well, only one
interrupt line is activated.

Though probing is simple in theory, the actual implementation might be unclear.
We'll look at two ways to perform the task: calling kernel-defined helper functions
and implementing our own version.

Kernel-assisted probing

The Linux kernel offers a low-level facility for probing the interrupt number. It
only works for nonshared interrupts, but then most hardware that is capable of
working in a shared interrupt mode provides better ways of finding the configured
interrupt number. The facility consists of two functions, declared in
<linux/interrupt.h> (which also describes the probing machinery):

unsigned long probe_irqg on(void) ;
This function returns a bit mask of unassigned interrupts. The driver must pre-
serve the returned bit mask and pass it to probe_irq_off later. After this call,
the driver should arrange for its device to generate at least one interrupt.

int probe_irqg off (unsigned long) ;

After the device has requested an interrupt, the driver calls this function, pass-
ing as argument the bit mask previously returned by probe_irqg on.
probe_irq_off returns the number of the interrupt that was issued after
“probe_on.” If no interrupts occurred, 0 is returned (thus, IRQ 0 can’t be
probed for, but no custom device can use it on any of the supported architec-
tures anyway). If more than one interrupt occurred (ambiguous detection),
probe_irq_off returns a negative value.

The programmer should be careful to enable interrupts on the device after the call
to probe_irq_on and to disable them before calling probe_irqg_off; Additionally, you
must remember to service the pending interrupt in your device after probe_irqg_off.

The short module demonstrates how to use such probing. If you load the module
with probe=1, the following code is executed to detect your interrupt line, pro-
vided pins 9 and 10 of the parallel connector are bound together:

int count = 0;
do {
unsigned long mask;

mask = probe_irg on() ;

outb_p(0x10, short_base+2); /* enable reporting */

outb_p (0x00, short_base) ; /* clear the bit */

outb_p (0xFF, short_base) ; /* set the bit: interrupt! */
outb_p(0x00, short_base+2); /* disable reporting */

259

22 June 2001 16:39

22 June 2001 16:39

Chapter 9: Interrupt Handling

udelay(5); /* give it some time */
short_irqg = probe_irqg off (mask) ;

if (short_irg == 0) { /* none of them? */
printk (KERN_INFO "short: no irg reported by probe\n") ;
short_irg = -1;

}

/*

* If more than one line has been activated, the result is
* negative. We should service the interrupt (no need for lpt port)
* and loop over again. Loop at most five times, then give up
*/
} while (short_irg < 0 && count++ < 5);
if (short_irg < 0)
printk("short: probe failed %i times, giving up\n", count);

Note the use of udelay before calling probe_irq_off: Depending on the speed of
your processor, you may have to wait for a brief period to give the interrupt time
to actually be delivered.

If you dig through the kernel sources, you may stumble across references to a dif-
ferent pair of functions:

void autoirg setup(int waittime) ;
Set up for an IRQ probe. The waittime argument is not used.

int autoirqg report(int waittime) ;
Delays for the given interval (in jiffies), then returns the number of the IRQ
seen since autoirqg_setup was called.

These functions are used primarily in the network driver code, for historical rea-
sons. They are currently implemented with probe_irq_on and probe_irq_off; there
is not usually any reason to use the autoirg_ functions over the probe_irq_ func-
tions.

Probing might be a lengthy task. While this is not true for short, probing a frame
grabber, for example, requires a delay of at least 20 ms (which is ages for the pro-
cessor), and other devices might take even longer. Therefore, it's best to probe for
the interrupt line only once, at module initialization, independently of whether
you install the handler at device open (as you should) or within the initialization
function (which is not recommended).

It’s interesting to note that on some platforms (PowerPC, M68k, most MIPS imple-
mentations, and both SPARC versions), probing is unnecessary and therefore the
previous functions are just empty placeholders, sometimes called “useless ISA non-
sense.” On other platforms, probing is only implemented for ISA devices. Anyway,
most architectures define the functions (even if empty) to ease porting existing
device drivers.

Generally speaking, probing is a hack, and mature architectures are like the PCI
bus, which provides all the needed information.

260

22 June 2001 16:39

Installing an Interrupt Handler

Do-it-yourself probing

Probing can be implemented in the driver itself without too much trouble. The
short module performs do-it-yourself detection of the IRQ line if it is loaded with
probe=2.

The mechanism is the same as the one described earlier: enable all unused inter-
rupts, then wait and see what happens. We can, however, exploit our knowledge
of the device. Often a device can be configured to use one IRQ number from a set
of three or four; probing just those IRQs enables us to detect the right one, with-
out having to test for all possible IRQs.

The short implementation assumes that 3, 5, 7, and 9 are the only possible IRQ
values. These numbers are actually the values that some parallel devices allow you
to select.

The following code probes by testing all “possible” interrupts and looking at what
happens. The trials array lists the IRQs to try and has 0 as the end marker; the
tried array is used to keep track of which handlers have actually been registered
by this driver.

int trials[] = {3, 5, 7, 9, 0};

int tried[] = {0, O, 0, O, 0};
int i, count = 0;
/*

* Install the probing handler for all possible lines. Remember
* the result (0 for success, or -EBUSY) in order to only free
what has been acquired

*

*/
for (i=0; trials[i]; i++)
tried[i] = request_irqg(trials[i], short_probing,
SA_INTERRUPT, "short probe", NULL);

do {
short_irg = 0; /* none obtained yet */
outb_p (0x10, short_base+2); /* enable */
outb_p (0x00, short_base) ;

(
outb_p (0xFF, short_base); /* toggle the bit */
outb_p(0x00, short_base+2); /* disable */
udelay(5); /* give it some time */

/* the value has been set by the handler */
if (short_irg == 0) { /* none of them? */
printk (KERN_INFO "short: no irg reported by probe\n") ;

-

* If more than one line has been activated, the result is
* negative. We should service the interrupt (but the lpt port
* doesn’t need it) and loop over again. Do it at most 5 times

201

22 June 2001 16:39

Chapter 9: Interrupt Handling

} while (short_irg <=0 && count++ < 5);

/* end of loop, uninstall the handler */
for (i=0; trials[i]; i++)
if (tried[i] == 0)
free_irg(trials([i], NULL);

if (short_irg < 0)
printk("short: probe failed %i times, giving up\n", count);

You might not know in advance what the “possible” IRQ values are. In that case,
you'll need to probe all the free interrupts, instead of limiting yourself to a few
trials[]. To probe for all interrupts, you have to probe from IRQ 0 to IRQ
NR_IRQS-1, where NR_TIRQS is defined in <asm/irqg.h> and is platform depen-
dent.

Now we are missing only the probing handler itself. The handler’s role is to
update short_irqg according to which interrupts are actually received. A 0 value
in short_irqg means “nothing yet,” while a negative value means “ambiguous.”
These values were chosen to be consistent with probe_irq_off and to allow the
same code to call either kind of probing within short.c.

void short_probing(int irqg, void *dev_id, struct pt_regs *regs)
{

if (short_irg == 0) short_irg = irqg; /* found */

if (short_irqg != irqg) short_irqg = -irqg; /* ambiguous */

}

The arguments to the handler are described later. Knowing that irq is the inter-
rupt being handled should be sufficient to understand the function just shown.

Fast and Slow Handlers

Older versions of the Linux kernel took great pains to distinguish between ‘“fast”
and “slow” interrupts. Fast interrupts were those that could be handled very
quickly, whereas handling slow interrupts took significantly longer. Slow interrupts
could be sufficiently demanding of the processor that it was worthwhile to reen-
able interrupts while they were being handled. Otherwise, tasks requiring quick
attention could be delayed for too long.

In modern kernels most of the differences between fast and slow interrupts have
disappeared. There remains only one: fast interrupts (those that were requested
with the SA_INTERRUPT flag) are executed with all other interrupts disabled on
the current processor. Note that other processors can still handle interrupts, though
you will never see two processors handling the same IRQ at the same time.

To summarize the slow and fast executing environments:

262

22 June 2001 16:39

Installing an Interrupt Handler

e A fast handler runs with interrupt reporting disabled in the microprocessor,
and the interrupt being serviced is disabled in the interrupt controller. The
handler can nonetheless enable reporting in the processor by calling sti.

e A slow handler runs with interrupt reporting enabled in the processor, and the
interrupt being serviced is disabled in the interrupt controller.

So, which type of interrupt should your driver use? On modern systems,
SA_INTERRUPT is only intended for use in a few, specific situations (such as
timer interrupts). Unless you have a strong reason to run your interrupt handler
with other interrupts disabled, you should not use SA_INTERRUPT.

This description should satisfy most readers, though someone with a taste for
hardware and some experience with her computer might be interested in going
deeper. If you don’t care about the internal details, you can skip to the next sec-
tion.

The internals of interrupt bandling on the x86

This description has been extrapolated from arch/i386/kernel/irq.c, arch/i386/ker-
nel/i8259.c, and include/asm-i386/bw_irg.h as they appear in the 2.4 kernels;
although the general concepts remain the same, the hardware details differ on
other platforms.

The lowest level of interrupt handling resides in assembly code declared as macros
in hw_irg.h and expanded in i8259.c. Each interrupt is connected to the function
do_IRQ, defined in irg.c.

The first thing do_IRQ does is to acknowledge the interrupt so that the interrupt
controller can go on to other things. It then obtains a spinlock for the given IRQ
number, thus preventing any other CPU from handling this IRQ. It clears a couple
of status bits (including one called TRQ_WAITING that we’'ll look at shortly), and
then looks up the handler(s) for this particular IRQ. If there is no handler, there’s
nothing to do; the spinlock is released, any pending tasklets and bottom halves
are run, and do_IRQ returns.

Usually, however, if a device is interrupting there is a handler registered as well.
The function bandle IRQ event is called to actually invoke the handlers. It starts
by testing a global interrupt lock bit; if that bit is set, the processor will spin until it
is cleared. Calling cl/i sets this bit, thus blocking handling of interrupts; the normal
interrupt handling mechanism does 7ot set this bit, and thus allows further pro-
cessing of interrupts. If the handler is of the slow variety, interrupts are reenabled
in the hardware and the handler is invoked. Then it’s just a matter of cleaning up,
running tasklets and bottom halves, and getting back to regular work. The “regular
work” may well have changed as a result of an interrupt (the handler could
wake_up a process, for example), so the last thing that happens on return from an
interrupt is a possible rescheduling of the processor.

263

22 June 2001 16:39

Chapter 9: Interrupt Handling

Probing for IRQs is done by setting the TRQ_WATITING status bit for each IRQ that
currently lacks a handler. When the interrupt happens, do_IRQ clears that bit and
then returns, since no handler is registered. probe_irq_off, when called by a driver,
need only search for the IRQ that no longer has TRQ_WAITING set.

Implementing a Handler

So far, we've learned to register an interrupt handler, but not to write one. Actu-
ally, there’s nothing unusual about a handler—it’s ordinary C code.

The only peculiarity is that a handler runs at interrupt time and therefore suffers
some restrictions on what it can do. These restrictions are the same as those we
saw with task queues. A handler can’t transfer data to or from user space, because
it doesn’t execute in the context of a process. Handlers also cannot do anything
that would sleep, such as calling sleep_on, allocating memory with anything other
than GFP_ATOMIC, or locking a semaphore. Finally, handlers cannot call schedule.

The role of an interrupt handler is to give feedback to its device about interrupt
reception and to read or write data according to the meaning of the interrupt
being serviced. The first step usually consists of clearing a bit on the interface
board; most hardware devices won’t generate other interrupts until their “interrupt-
pending” bit has been cleared. Some devices don’t require this step because they
don’t have an “interrupt-pending” bit; such devices are a minority, although the
parallel port is one of them. For that reason, short does not have to clear such a
bit.

A typical task for an interrupt handler is awakening processes sleeping on the
device if the interrupt signals the event they’re waiting for, such as the arrival of
new data.

To stick with the frame grabber example, a process could acquire a sequence of
images by continuously reading the device; the read call blocks before reading
each frame, while the interrupt handler awakens the process as soon as each new
frame arrives. This assumes that the grabber interrupts the processor to signal suc-
cessful arrival of each new frame.

The programmer should be careful to write a routine that executes in a minimum
of time, independent of its being a fast or slow handler. If a long computation
needs to be performed, the best approach is to use a tasklet or task queue to
schedule computation at a safer time (see “Task Queues” in Chapter 6).

Our sample code in short makes use of the interrupt to call do_gettimeofday and
print the current time to a page-sized circular buffer. It then awakens any reading
process because there is now data available to be read.

2064

22 June 2001 16:39

Implementing a Handler

void short_interrupt(int irg, void *dev_id, struct pt_regs *regs)
{

struct timeval tv;

int written;

do_gettimeofday (&tv) ;

/* Write a 16-byte record. Assume PAGE_SIZE is a multiple of 16 */
written = sprintf ((char *)short_head, "%$08u.%06u\n",
(int) (tv.tv_sec % 100000000), (int) (tv.tv_usec));
short_incr_bp (&short_head, written);
wake_up_interruptible (&short_gueue); /* wake any reading process */
}

This code, though simple, represents the typical job of an interrupt handler. It, in
turn, calls short_incr_bp, which is defined as follows:

static inline void short_incr_bp(volatile unsigned long *index,
int delta)
{
unsigned long new = *index + delta;
barrier (); /* Don’'t optimize these two together */
*index = (new >= (short_buffer + PAGE_SIZE)) ? short_buffer : new;

}

This function has been carefully written to wrap a pointer into the circular buffer
without ever exposing an incorrect value. By assigning only the final value and
placing a barrier to keep the compiler from optimizing things, it is possible to
manipulate the circular buffer pointers safely without locks.

The device file used to read the buffer being filled at interrupt time is /dev/short-
int. This device special file, together with /dev/shoriprint, wasn’t introduced in
Chapter 8, because its use is specific to interrupt handling. The internals of
/dev/shortint are specifically tailored for interrupt generation and reporting. Writing
to the device generates one interrupt every other byte; reading the device gives
the time when each interrupt was reported.

If you connect together pins 9 and 10 of the parallel connector, you can generate
interrupts by raising the high bit of the parallel data byte. This can be accom-
plished by writing binary data to /deu/shortO or by writing anything to
/dev/shortint.*

The following code implements read and write for /dev/shortint.

* The shortint device accomplishes its task by alternately writing 0x00 and 0xff to the paral-
lel port.

265

22 June 2001 16:39

Chapter 9: Interrupt Handling

ssize_t short_i_read (struct file *filp, char *buf, size_t count,

loff_t *f_pos)

int countO;

while (short_head == short_tail) ({
interruptible_sleep_on (&short_gueue) ;
if (signal_pending (current)) /* a signal arrived */

return -ERESTARTSYS; /* tell the fs layer to handle it */
/* else, loop */
}
/* count0 is the number of readable data bytes */
count0 = short_head - short_tail;
if (countO < 0) /* wrapped */
count0 = short_buffer + PAGE_SIZE - short_tail;
if (count0 < count) count = countO;

if (copy_to_user (buf, (char *)short_tail, count))
return -EFAULT;

short_incr_bp (&short_tail, count);

return count;

ssize_t short_i_write (struct file *filp, const char *buf, size_t count,

}

loff_t *f_pos)

int written = 0, odd = *f_pos & 1;
unsigned long address = short_base; /* output to the parallel
data latch */

if (use_mem) {
while (written < count)
writeb (0xff * ((++written + odd) & 1), address);
} else {
while (written < count)
outb (0xff * ((++written + odd) & 1), address);

*f_pos += count;
return written;

The other device special file, /dev/shoriprint, uses the parallel port to drive a
printer, and you can use it if you want to avoid soldering a wire between pin 9
and 10 of a D-25 connector. The write implementation of shoriprint uses a circular
buffer to store data to be printed, while the read implementation is the one just
shown (so you can read the time your printer takes to eat each character).

In order to support printer operation, the interrupt handler has been slightly modi-
fied from the one just shown, adding the ability to send the next data byte to the
printer if there is more data to transfer.

266

22 June 2001 16:39

Implementing a Handler

Using Arguments

Though short ignores them, three arguments are passed to an interrupt handler:
irg, dev_id, and regs. Let’s look at the role of each.

The interrupt number (int irq) is useful as information you may print in your
log messages, if any. Although it had a role in pre-2.0 kernels, when no dev_id
existed, dev_id serves that role much better.

The second argument, void *dev_id, is a sort of ClientData; a void * argu-
ment is passed to request_irg, and this same pointer is then passed back as an
argument to the handler when the interrupt happens.

You'll usually pass a pointer to your device data structure in dev_id, so a driver
that manages several instances of the same device doesn’t need any extra code in
the interrupt handler to find out which device is in charge of the current interrupt
event. Typical use of the argument in an interrupt handler is as follows:

static void sample_interrupt (int irqg, void *dev_id, struct pt_regs
*regs)
{

struct sample_dev *dev = dev_id;

/* now ‘dev’ points to the right hardware item */
/* oo %/
}

The typical open code associated with this handler looks like this:

static void sample_open(struct inode *inode, struct file *filp)
{
struct sample_dev *dev = hwinfo + MINOR (inode->i_rdev) ;
request_irqg(dev->irqg, sample_interrupt,
0 /* flags */, "sample", dev /* dev_id */);
VA
return 0;

}

The last argument, struct pt_regs *regs, is rarely used. It holds a snapshot
of the processor’s context before the processor entered interrupt code. The regis-
ters can be used for monitoring and debugging; they are not normally needed for
regular device driver tasks.

Enabling and Disabling Interrupts

We have already seen the sti and c/i functions, which can enable and disable all
interrupts. Sometimes, however, it’s useful for a driver to enable and disable inter-
rupt reporting for its own IRQ line only. The kernel offers three functions for this
purpose, all declared in <asm/irg.h>:

267

22 June 2001 16:39

Chapter 9: Interrupt Handling

void disable_irg(int irq);
void disable_irg nosync (int irq);
void enable_irg(int irq);

Calling any of these functions may update the mask for the specified irq in the
programmable interrupt controller (PIC), thus disabling or enabling IRQs across all
processors. Calls to these functions can be nested—if disable_irq is called twice in
succession, two enable_irg calls will be required before the TRQ is truly reenabled.
It is possible to call these functions from an interrupt handler, but enabling your
own IRQ while handling it is not usually good practice.

disable_irq will not only disable the given interrupt, but will also wait for a cur-
rently executing interrupt handler, if any, to complete. disable_irq_nosync, on the
other hand, returns immediately. Thus, using the latter will be a little faster, but
may leave your driver open to race conditions.

But why disable an interrupt? Sticking to the parallel port, let’s look at the plip net-
work interface. A plip device uses the bare-bones parallel port to transfer data.
Since only five bits can be read from the parallel connector, they are interpreted as
four data bits and a clock/handshake signal. When the first four bits of a packet
are transmitted by the initiator (the interface sending the packet), the clock line is
raised, causing the receiving interface to interrupt the processor. The plip handler
is then invoked to deal with newly arrived data.

After the device has been alerted, the data transfer proceeds, using the handshake
line to clock new data to the receiving interface (this might not be the best imple-
mentation, but it is necessary for compatibility with other packet drivers using the
parallel port). Performance would be unbearable if the receiving interface had to
handle two interrupts for every byte received. The driver therefore disables the
interrupt during the reception of the packet; instead, a poll-and-delay loop is used
to bring in the data.

Similarly, since the handshake line from the receiver to the transmitter is used to
acknowledge data reception, the transmitting interface disables its IRQ line during
packet transmission.

Finally, it’s interesting to note that the SPARC and M68k implementations define
both the disable_irq and enable_irq symbols as pointers rather than functions. This
trick allows the kernel to assign the pointers at boot time according to the actual
platform being run. The C-language semantics to use the function are the same on
all Linux systems, independent of whether this trick is used or not, which helps
avoid some tedious coding of conditionals.

268

22 June 2001 16:39

Tasklets and Bottom-Half Processing

Tasklets and Bottom-Half Processing

One of the main problems with interrupt handling is how to perform longish tasks
within a handler. Often a substantial amount of work must be done in response to
a device interrupt, but interrupt handlers need to finish up quickly and not keep
interrupts blocked for long. These two needs (work and speed) conflict with each
other, leaving the driver writer in a bit of a bind.

Linux (along with many other systems) resolves this problem by splitting the inter-
rupt handler into two halves. The so-called top half is the routine that actually
responds to the interrupt—the one you register with request_irq. The bottom half
is a routine that is scheduled by the top half to be executed later, at a safer time.
The use of the term bottom half in the 2.4 kernel can be a bit confusing, in that it
can mean either the second half of an interrupt handler or one of the mechanisms
used to implement this second half, or both. When we refer to a bottom half we
are speaking generally about a bottom half; the old Linux bottom-half implementa-
tion is referred to explicitly with the acronym BH.

But what is a bottom half useful for?

The big difference between the top-half handler and the bottom half is that all
interrupts are enabled during execution of the bottom half—that’s why it runs at a
safer time. In the typical scenario, the top half saves device data to a device-spe-
cific buffer, schedules its bottom half, and exits: this is very fast. The bottom half
then performs whatever other work is required, such as awakening processes,
starting up another I/O operation, and so on. This setup permits the top half to
service a new interrupt while the bottom half is still working.

Every serious interrupt handler is split this way. For instance, when a network
interface reports the arrival of a new packet, the handler just retrieves the data and
pushes it up to the protocol layer; actual processing of the packet is performed in
a bottom half.

One thing to keep in mind with bottom-half processing is that all of the restric-
tions that apply to interrupt handlers also apply to bottom halves. Thus, bottom
halves cannot sleep, cannot access user space, and cannot invoke the scheduler.

The Linux kernel has two different mechanisms that may be used to implement
bottom-half processing. Tasklets were introduced late in the 2.3 development
series; they are now the preferred way to do bottom-half processing, but they are
not portable to earlier kernel versions. The older bottom-half (BH) implementation
exists in even very old kernels, though it is implemented with tasklets in 2.4. We’ll
look at both mechanisms here. In general, device drivers writing new code should
choose tasklets for their bottom-half processing if possible, though portability con-
siderations may determine that the BH mechanism needs to be used instead.

269

22 June 2001 16:39

Chapter 9: Interrupt Handling

The following discussion works, once again, with the short driver. When loaded
with a module option, short can be told to do interrupt processing in a top/bot-
tom-half mode, with either a tasklet or bottom-half handler. In this case, the top
half executes quickly; it simply remembers the current time and schedules the bot-
tom half processing. The bottom half is then charged with encoding this time and
awakening any user processes that may be waiting for data.

Tasklets

We have already had an introduction to tasklets in Chapter 6, so a quick review
should suffice here. Remember that tasklets are a special function that may be
scheduled to run, in interrupt context, at a system-determined safe time. They may
be scheduled to run multiple times, but will only run once. No tasklet will ever
run in parallel with itself, since they only run once, but tasklets can run in parallel
with other tasklets on SMP systems. Thus, if your driver has multiple tasklets, they
must employ some sort of locking to avoid conflicting with each other.

Tasklets are also guaranteed to run on the same CPU as the function that first
schedules them. An interrupt handler can thus be secure that a tasklet will not
begin executing before the handler has completed. However, another interrupt can
certainly be delivered while the tasklet is running, so locking between the tasklet
and the interrupt handler may still be required.

Tasklets must be declared with the DECLARE_TASKLET macro:
DECLARE_TASKLET (name, function, data);

name is the name to be given to the tasklet, function is the function that is
called to execute the tasklet (it takes one unsigned long argument and returns
void), and data is an unsigned long value to be passed to the tasklet function.

The short driver declares its tasklet as follows:

void short_do_tasklet (unsigned long);
DECLARE_TASKLET (short_tasklet, short_do_tasklet, 0);

The function tasklet_schedule is used to schedule a tasklet for running. If short is
loaded with tasklet=1, it installs a different interrupt handler that saves data
and schedules the tasklet as follows:

void short_tl_interrupt(int irg, void *dev_id, struct pt_regs *regs)
{
do_gettimeofday ((struct timeval *) tv_head); /* cast to stop
‘volatile’ warning */
short_incr_tv(&tv_head) ;
tasklet_schedule (&short_tasklet) ;
short_bh_count++; /* record that an interrupt arrived */

270

22 June 2001 16:39

Tasklets and Bottom-Half Processing

The actual tasklet routine, short_do_tasklet, will be executed shortly at the system’s
convenience. As mentioned earlier, this routine performs the bulk of the work of
handling the interrupt; it looks like this:

void short_do_tasklet (unsigned long unused)
{
int savecount = short_bh_count, written;
short_bh_count = 0; /* we have already been removed from queue */
/*
* The bottom half reads the tv array, filled by the top half,
* and prints it to the circular text buffer, which is then consumed
* by reading processes
*/

/* First write the number of interrupts that occurred before
this bh */

written = sprintf((char *)short_head, "bh after %6i\n", savecount) ;
short_incr_bp (&short_head, written);

/*

* Then, write the time values. Write exactly 16 bytes at a time,
* so it aligns with PAGE_SIZE

*/

do {
written = sprintf((char *)short_head, "$08u.%06u\n",
(int) (tv_tail->tv_sec % 100000000),
(int) (tv_tail->tv_usec));
short_incr_bp (&short_head, written);
short_incr_tv(&tv_tail);
} while (tv_tail != tv_head);

wake_up_interruptible (&short_gueue); /* wake any reading process */
}

Among other things, this tasklet makes a note of how many interrupts have arrived
since it was last called. A device like short can generate a great many interrupts in
a brief period, so it is not uncommon for several to arrive before the bottom half is
executed. Drivers must always be prepared for this possibility, and must be able to
determine how much work there is to perform from the information left by the top
half.

The BH Mechanism

Unlike tasklets, old-style BH bottom halves have been around almost as long as
the Linux kernel itself. They show their age in a number of ways. For example, all
BH bottom halves are predefined in the kernel, and there can be a maximum of
32 of them. Since they are predefined, bottom halves cannot be used directly by
modules, but that is not actually a problem, as we will see.

271

22 June 2001 16:39

Chapter 9: Interrupt Handling

Whenever some code wants to schedule a bottom half for running, it calls
mark_bh. In the older BH implemention, mark_bh would set a bit in a bit mask,
allowing the corresponding bottom-half handler to be found quickly at runtime. In
modern kernels, it just calls tasklet_schedule to schedule the bottom-half routine
for execution.

Marking bottom halves is defined in <linux/interrupt.h> as
void mark_bh(int nr);

Here, nr is the “number” of the BH to activate. The number is a symbolic con-
stant defined in <linux/interrupt.h> that identifies the bottom half to run.
The function that corresponds to each bottom half is provided by the driver that
owns the bottom half. For example, when mark_bh (SCSI_BH) is called, the
function being scheduled for execution is scsi_bottom_half handler, which is part
of the SCSI driver.

As mentioned earlier, bottom halves are static objects, so a modularized driver
won't be able to register its own BH. There’s no support for dynamic allocation of
BH bottom halves, and it’s unlikely there ever will be. Fortunately, the immediate
task queue can be used instead.

The rest of this section lists some of the most interesting bottom halves. It then
describes how the kernel runs a BH bottom half, which you should understand in
order to use bottom halves properly.

Several BH bottom halves declared by the kernel are interesting to look at, and a
few can even be used by a driver, as introduced earlier. These are the most inter-
esting BHs:

IMMEDIATE_BH
This is the most important bottom half for driver writers. The function being
scheduled runs (with run_task_queue) the tg_immediate task queue. A
driver (like a custom module) that doesn’t own a bottom half can use the
immediate queue as if it were its own BH. After registering a task in the
queue, the driver must mark the BH in order to have its code actually exe-
cuted; how to do this was introduced in “The immediate queue,” in Chapter 6.

TQUEUE_BH
This BH is activated at each timer tick if a task is registered in tqg_timer. In
practice, a driver can implement its own BH using tg_timer. The timer
queue introduced in “The timer queue” in Chapter 6 is a BH, but there’s no
need to call mark_bb for it.

TIMER_BH
This BH is marked by do_timer, the function in charge of the clock tick. The
function that this BH executes is the one that drives the kernel timers. There is
no way to use this facility for a driver short of using add_timer.

272

22 June 2001 16:39

Tasklets and Bottom-Half Processing

The remaining BH bottom halves are used by specific kernel drivers. There are no
entry points in them for a module, and it wouldn’t make sense for there to be any.
The list of these other bottom halves is steadily shrinking as the drivers are con-
verted to using tasklets.

Once a BH has been marked, it is executed when bb_action (kernel/softirq.c) is
invoked, which happens when tasklets are run. This happens whenever a process
exits from a system call or when an interrupt handler exits. Tasklets are always
executed as part of the timer interrupt, so a driver can usually expect that a bot-
tom-half routine will be executed at most 10 ms after it has been scheduled.

Writing a BH Bottom Half

It’s quite apparent from the list of available bottom halves in “The BH Mechanism”
that a driver implementing a bottom half should attach its code to IMMEDIATE_BH
by using the immediate queue.

When IMMEDIATE_BH is marked, the function in charge of the immediate bottom
half just consumes the immediate queue. If your interrupt handler queues its BH
handler to tg immediate and marks the IMMEDIATE_BH bottom half, the
queued task will be called at just the right time. Because in all kernels we are
interested in you can queue the same task multiple times without trashing the task
queue, you can queue your bottom half every time the top-half handler runs. We’ll
see this behavior in a while.

Drivers with exotic configurations—multiple bottom halves or other setups that
can’t easily be handled with a plain tq_immediate—can be satisfied by using a
custom task queue. The interrupt handler queues the tasks in its own queue, and
when it’s ready to run them, a simple queue-consuming function is inserted into
the immediate queue. See “Running Your Own Task Queues” in Chapter 6 for
details.

Let’'s now look at the short BH implementation. When loaded with bh=1, the
module installs an interrupt handler that uses a BH bottom half:

void short_bh_interrupt (int irqg, void *dev_id, struct pt_regs *regs)
{
/* cast to stop ‘volatile’ warning */
do_gettimeofday ((struct timeval *) tv_head);
short_incr_tv(&tv_head) ;

/* Queue the bh. Don’t care about multiple enqueueing */
queue_task (&short_task, &tg immediate) ;
mark_bh (IMMEDIATE_BH) ;

short_bh_count++; /* record that an interrupt arrived */

273

22 June 2001 16:39

Chapter 9: Interrupt Handling

As expected, this code calls queue_task without checking whether the task is
already enqueued.

The BH, then, performs the rest of the work. This BH is, in fact, the same
short_do_tasklet that was shown previuosly.

Here’s an example of what you see when loading short by specifying bh=1:

morgana% echo 1122334455 > /dev/shortint ; cat /dev/shortint
bh after 5
50588804.876653
50588804.876693
50588804.876720
50588804.876747
50588804.876774

The actual timings that you will see will vary, of course, depending on your partic-
ular system.

Interrupt Sharing

The notion of an IRQ conflict is almost synonymous with the PC architecture. In
general, IRQ lines on the PC have not been able to serve more than one device,
and there have never been enough of them. As a result, frustrated users have often
spent much time with their computer case open, trying to find a way to make all
of their hardware play well together.

But, in fact, there is nothing in the design of the hardware itself that says that
interrupt lines cannot be shared. The problems are on the software side. With the
arrival of the PCI bus, the writers of system software have had to work a little
harder, since all PCI interrupts can explicitly be shared. So Linux supports shared
interrupts—and on all buses where it makes any sense, not just the PCI. Thus,
suitably aware drivers for ISA devices can also share an IRQ line.

The question of interrupt sharing under the ISA bus brings in the issue of level-
triggered versus edge-triggered interrupt lines. Although the former kind of inter-
rupt reporting is safe with regard to sharing, it may lead to software lockup if not
handled correctly. Edge-triggered interrupts, on the other hand, are not safe with
regard to sharing; ISA is edge triggered, because this signaling is easier to imple-
ment at hardware level and therefore was the common choice in the 1980s. This
issue is unrelated to electrical signal levels; in order to support sharing, the line
must be able to be driven active by multiple sources whether it is level triggered
or edge triggered.

With a level-triggered interrupt line, the peripheral device asserts the IRQ signal
until software clears the pending interrupt (usually by writing to a device register);
therefore, if several devices pull the line active, the CPU will signal an interrupt as

274

22 June 2001 16:39

Interrupt Sharing

soon as the IRQ is enabled until all drivers have serviced their devices. This
behavior is safe with regard to sharing but may lead to lockup if a driver fails to
clear its interrupt source.

When using edge-triggered interrupts, on the other hand, interrupts may be lost: if
one device pulls the line active for too long a time, when another device pulls the
line active no edge will be generated, and the processor will ignore the second
request. A shared handler may just not see the interrupt, and if its hardware
doesn’t deassert the IRQ line no other interrupt will be notified for either shared
device.

For this reason, even if interrupt sharing is supported under ISA, it may not func-
tion properly; while some devices pull the IRQ line active for a single clock cycle,
other devices are not so well behaved and may cause great pains to the driver
writer who tries to share the IRQ. We won’t go any deeper into this issue; for the
rest of this section we assume that either the host bus supports sharing or that you
know what you are doing.

To develop a driver that can manage a shared interrupt line, some details need to
be considered. As discussed later, some of the features described in this chapter
are not available for devices using interrupt sharing. Whenever possible, it's better
to support sharing because it presents fewer problems for the final user. In some
cases (e.g., when working with the PCI bus), interrupt sharing is mandatory.

Installing a Shared Handler

Shared interrupts are installed through request_irq just like nonshared ones, but
there are two differences:

e The SA_SHIRQ bit must be specified in the £lags argument when requesting
the interrupt.

e The dev_id argument must be unique. Any pointer into the module’s address
space will do, but dev_id definitely cannot be set to NULL.

The kernel keeps a list of shared handlers associated with the interrupt, like a
driver’s signature, and dev_id differentiates between them. If two drivers were to
register NULL as their signature on the same interrupt, things might get mixed up
at unload time, causing the kernel to oops when an interrupt arrived. For this rea-
son, modern kernels will complain loudly if passed a NULL dev_id when regis-
tering shared interrupts.

When a shared interrupt is requested, request_irq succeeds if either the interrupt
line is free or any handlers already registered for that line have also specified that
the IRQ is to be shared. With 2.0 kernels, it was also necessary that all handlers for
a shared interrupt were either fast or slow—the two modes could not be mixed.

275

22 June 2001 16:39

Chapter 9: Interrupt Handling

Whenever two or more drivers are sharing an interrupt line and the hardware
interrupts the processor on that line, the kernel invokes every handler registered
for that interrupt, passing each its own dev_id. Therefore, a shared handler must
be able to recognize its own interrupts, and should quickly exit when its own
device has not interrupted.

If you need to probe for your device before requesting the IRQ line, the kernel
can’t help you. No probing function is available for shared handlers. The standard
probing mechanism works if the line being used is free, but if the line is already
held by another driver with sharing capabilities, the probe will fail, even if your
driver would have worked perfectly.

The only available technique for probing shared lines, then, is the do-it-yourself
way. The driver should request every possible IRQ line as a shared handler and
then see where interrupts are reported. The difference between that and do-it-
yourself probing is that the probing handler must check with the device to see that
the interrupt actually occurred, because it could have been called in response to
another device interrupting on a shared line.

Releasing the handler is performed in the normal way, using release_irq. Here the
dev_id argument is used to select the correct handler to release from the list of
shared handlers for the interrupt. That's why the dev_id pointer must be unique.

A driver using a shared handler needs to be careful about one more thing: it can’t
play with enable_irq or disable_irq. If it does, things might go haywire for other
devices sharing the line. In general, the programmer must remember that his
driver doesn’t own the IRQ, and its behavior should be more “social” than is nec-
essary if one owns the interrupt line.

Running the Handler

As suggested earlier, when the kernel receives an interrupt, all the registered han-
dlers are invoked. A shared handler must be able to distinguish between interrupts
that it needs to handle and interrupts generated by other devices.

Loading short with the option shared=1 installs the following handler instead of
the default:

void short_sh_interrupt(int irg, void *dev_id, struct pt_regs *regs)
{

int value, written;

struct timeval tv;

/* If it wasn’'t short, return immediately */
value = inb(short_base);

if (! (value & 0x80)) return;

/* clear the interrupting bit */
outb(value & 0x7F, short_base);

276

22 June 2001 16:39

Interrupt Sharing

/* the rest is unchanged */

do_gettimeofday (&tv) ;
written = sprintf((char *)short_head, "$08u.%06u\n",

(int) (tv.tv_sec % 100000000), (int) (tv.tv_usec));
short_incr_bp (&short_head, written);
wake_up_interruptible (&short_qgueue); /* wake any reading process */

}

An explanation is due here. Since the parallel port has no “interrupt-pending” bit
to check, the handler uses the ACK bit for this purpose. If the bit is high, the inter-
rupt being reported is for short, and the handler clears the bit.

The handler resets the bit by zeroing the high bit of the parallel interface’s data
port—short assumes that pins 9 and 10 are connected together. If one of the other
devices sharing the IRQ with short generates an interrupt, short sees that its own
line is still inactive and does nothing.

A full-featured driver probably splits the work into top and bottom halves, of
course, but that’s easy to add and does not have any impact on the code that
implements sharing. A real driver would also likely use the dev_id argument to
determine which, of possibly many, devices might be interrupting.

Note that if you are using a printer (instead of the jumper wire) to test interrupt
management with short, this shared handler won’t work as advertised, because the
printer protocol doesn’t allow for sharing, and the driver can’t know whether the
interrupt was from the printer or not.

The /proc Interface

Installing shared handlers in the system doesn’t affect /proc/stat, which doesn’t
even know about handlers. However, /proc/interrupts changes slightly.

All the handlers installed for the same interrupt number appear on the same line
of /proc/interrupts. The following output shows how shared interrupt handlers are
displayed:

CPUO CPU1
0 22114216 22002860 IO-APIC-edge timer
1 135401 136582 IO-APIC-edge keyboard
2: 0 0 XT-PIC cascade
5: 5162076 5160039 IO-APIC-level ethO
9 0 0 IO-APIC-level acpi, esl370
10: 310450 312222 IO-APIC-level aic7xxx
12: 460372 471747 IO-APIC-edge PS/2 Mouse
13: 1 0 XT-PIC fpu
15: 1367555 1322398 IO-APIC-edge idel
NMTI : 44117004 44117004
LOC: 44116987 44116986
ERR: 0

277

22 June 2001 16:39

Chapter 9: Interrupt Handling

The shared interrupt line here is IRQ 9; the active handlers are listed on one line,
separated by commas. Here the power management subsystem (“acpi”) is sharing
this IRQ with the sound card (“es1370”). The kernel is unable to distinguish inter-
rupts from these two sources, and will invoke each interrupt handlers in the driver
for each interrupt.

Interrupt-Driven 1/0

Whenever a data transfer to or from the managed hardware might be delayed for
any reason, the driver writer should implement buffering. Data buffers help to
detach data transmission and reception from the write and read system calls, and
overall system performance benefits.

A good buffering mechanism leads to interrupt-driven I/O, in which an input
buffer is filled at interrupt time and is emptied by processes that read the device;
an output buffer is filled by processes that write to the device and is emptied at
interrupt time. An example of interrupt-driven output is the implementation of
/dev/shortint.

For interrupt-driven data transfer to happen successfully, the hardware should be
able to generate interrupts with the following semantics:

e For input, the device interrupts the processor when new data has arrived and
is ready to be retrieved by the system processor. The actual actions to perform
depend on whether the device uses I/O ports, memory mapping, or DMA.

e For output, the device delivers an interrupt either when it is ready to accept
new data or to acknowledge a successful data transfer. Memory-mapped and
DMA-capable devices usually generate interrupts to tell the system they are
done with the buffer.

The timing relationships between a read or write and the actual arrival of data
were introduced in “Blocking and Nonblocking Operations”, in Chapter 5. But
interrupt-driven I/O introduces the problem of synchronizing concurrent access to
shared data items and all the issues related to race conditions. The next section
covers this related topic in some depth.

Race Conditions

We have already seen race conditions come up a number of times in the previous
chapters. Whereas race conditions can happen at any time on SMP systems,
uniprocessor systems, to this point, have had to worry about them rather less.”

* Note, however, that the kernel developers are seriously considering making all kernel
code preemptable at almost any time, making locking mandatory even on uniprocessor
systems.

278

22 June 2001 16:39

Race Conditions

Interrupts, however, can bring with them a whole new set of race conditions, even
on uniprocessor systems. Since an interrupt can happen at any time, it can cause
the interrupt handler to be executed in the middle of an arbitrary piece of driver
code. Thus, any device driver that is working with interrupts—and that is most of
them—must be very concerned with race conditions. For this reason, we look
more closely at race conditions and their prevention in this chapter.

Dealing with race conditions is one of the trickiest aspects of programming,
because the related bugs are subtle and very difficult to reproduce, and it’s hard to
tell when there is a race condition between interrupt code and the driver methods.
The programmer must take great care to avoid corruption of data or metadata.

Different techniques can be employed to prevent data corruption, and we will
introduce the most common ones. We won’t show complete code because the best
code for each situation depends on the operating mode of the device being
driven, and on the programmer’s taste. All of the drivers in this book, however,
protect themselves against race conditions, so examples can be found in the sam-
ple code.

The most common ways of protecting data from concurrent access are as follows:
e Using a circular buffer and avoiding shared variables

e Using spinlocks to enforce mutual exclusion

e Using lock variables that are atomically incremented and decremented

Note that semaphores are not listed here. Because locking a semaphore can put a
process to sleep, semaphores may not be used in interrupt handlers.

Whatever approach you choose, you still need to decide what to do when access-
ing a variable that can be modified at interrupt time. In simple cases, such a vari-
able can simply be declared as volatile to prevent the compiler from
optimizing access to its value (for example, it prevents the compiler from holding
the value in a register for the whole duration of a function). However, the com-
piler generates suboptimal code whenever volatile variables are involved, so
you might choose to resort to some sort of locking instead. In more complicated
situations, there is no choice but to use some sort of locking.

Using Circular Buffers

Using a circular buffer is an effective way of handling concurrent-access problems;
the best way to deal with concurrent access is to perform no concurrent access
whatsoever.

The circular buffer uses an algorithm called “producer and consumer”: one player
pushes data in and the other pulls data out. Concurrent access is avoided if there

279

22 June 2001 16:39

Chapter 9: Interrupt Handling

is exactly one producer and exactly one consumer. There are two examples of
producer and consumer in short. In one case, the reading process is waiting to
consume data that is produced at interrupt time; in the other, the bottom half con-
sumes data produced by the top half.

Two pointers are used to address a circular buffer: head and tail. head is the
point at which data is being written and is updated only by the producer of the
data. Data is being read from tail, which is updated only by the consumer. As
mentioned earlier, if data is written at interrupt time, you must be careful when
accessing head multiple times. You should either declare it as volatile or use
some sort of locking.

The circular buffer runs smoothly, except when it fills up. If that happens, things
become hairy, and you can choose among different possible solutions. The short
implementation just loses data; there’s no check for overflow, and if head goes
beyond tail, a whole buffer of data is lost. Some alternative implementations are
to drop the last item; to overwrite the buffer tail, as printk does (see “How Mes-
sages Get Logged” in Chapter 4); to hold up the producer, as scullpipe does; or to
allocate a temporary extra buffer to back up the main buffer. The best solution
depends on the importance of your data and other situation-specific questions, so
we won'’t cover it here.

Although the circular buffer appears to solve the problem of concurrent access,
there is still the possibility of a race condition when the read function goes to
sleep. This code shows where the problem appears in short:

while (short_head == short_tail) {
interruptible_sleep_on (&short_gqueue) ;
/* L. %/

}

When executing this statement, it is possible that new data will arrive afier the
while condition is evaluated as true and before the process goes to sleep. Infor-
mation carried in by the interrupt won’t be read by the process; the process goes
to sleep even though head != tail, and it isn’t awakened until the next data
item arrives.

We didn’t implement correct locking for short because the source of short_read is
included in “A Sample Driver” in Chapter 8, and at that point this discussion was
not worth introducing. Also, the data involved is not worth the effort.

Although the data that short collects is not vital, and the likelihood of getting an
interrupt in the time lapse between two successive instructions is often negligible,
sometimes you just can’t take the risk of going to sleep when data is pending. This
problem is general enough to deserve special treatment and is delayed to “Going
to Sleep Without Races” later in this chapter, where we’ll discuss it in detail.

280

22 June 2001 16:39

Race Conditions

It's interesting to note that only a producer-and-consumer situation can be
addressed with a circular buffer. A programmer must often deal with more com-
plex data structures to solve the concurrent-access problem. The producer/con-
sumer situation is actually the simplest class of these problems; other structures,
such as linked lists, simply don’t lend themselves to a circular buffer implementa-
tion.

Using Spinlocks

We have seen spinlocks before, for example, in the scull driver. The discussion
thus far has looked only at a few uses of spinlocks; in this section we cover them
in rather more detail.

A spinlock, remember, works through a shared variable. A function may acquire
the lock by setting the variable to a specific value. Any other function needing the
lock will query it and, seeing that it is not available, will “spin” in a busy-wait loop
until it is available. Spinlocks thus need to be used with care. A function that holds
a spinlock for too long can waste much time because other CPUs are forced to
wait.

Spinlocks are represented by the type spinlock_t, which, along with the vari-
ous spinlock functions, is declared in <asm/spinlock.h>. Normally, a spinlock
is declared and initialized to the unlocked state with a line like:

spinlock_t my_lock = SPIN_LOCK_UNLOCKED;

If, instead, it is necessary to initialize a spinlock at runtime, use spin_Ilock_init:
spin_lock_init (&my_lock) ;

There are a number of functions (actually macros) that work with spinlocks:

spin_lock(spinlock_t *lock);
Acquire the given lock, spinning if necessary until it is available. On return
from spin_lock, the calling function owns the lock.

spin_lock_irgsave(spinlock_t *lock, unsigned long flags);
This version also acquires the lock; in addition, it disables interrupts on the
local processor and stores the current interrupt state in £lags. Note that all of
the spinlock primitives are defined as macros, and that the £lags argument is
passed directly, not as a pointer.

spin_lock_irg(spinlock_t *lock);
This function acts like spin_lock_irgsave, except that it does not save the cur-
rent interrupt state. This version is slightly more efficient than
spin_lock_irgsave, but it should only be used in situations in which you know
that interrupts will not have already been disabled.

281

22 June 2001 16:39

Chapter 9: Interrupt Handling

spin_lock_bh(spinlock_ t *lock);
Obtains the given lock and prevents the execution of bottom halves.

spin_unlock(spinlock_t *lock);
spin_unlock_irgrestore(spinlock t *lock, unsigned long
flags);

spin_unlock_irg(spinlock_t *lock);

spin_unlock_bh(spinlock_t *lock);
These functions are the counterparts of the various locking primitives
described previously. spin_unlock unlocks the given lock and nothing else.
spin_unlock_irgrestore possibly enables interrupts, depending on the flags
value (which should have come from spin_lock_irgsave). spin_unlock_irg
enables interrupts unconditionally, and spin_unlock_bb reenables bottom-half
processing. In each case, your function should be in possession of the lock
before calling one of the unlocking primitives, or serious disorder will result.

spin_is_locked(spinlock_t *lock);

spin_trylock(spinlock_t *lock)

spin_unlock_wait (spinlock_t *lock);
spin_is_locked queries the state of a spinlock without changing it. It returns
nonzero if the lock is currently busy. To attempt to acquire a lock without
waiting, use spin_trylock, which returns nonzero if the operation failed (the
lock was busy). spin_unlock_wait waits until the lock becomes free, but does
not take possession of it.

Many users of spinlocks stick to spin_lock and spin_unlock. If you are using spin-
locks in interrupt handlers, however, you must use the IRQ-disabling versions
(usually spin_lock_irgsave and spin_unlock_irgsave) in the noninterrupt code. To
do otherwise is to invite a deadlock situation.

It is worth considering an example here. Assume that your driver is running in its
read method, and it obtains a lock with spin_lock. While the read method is hold-
ing the lock, your device interrupts, and your interrupt handler is executed on the
same processor. If it attempts to use the same lock, it will go into a busy-wait
loop, since your read method already holds the lock. But, since the interrupt rou-
tine has preempted that method, the lock will never be released and the processor
deadlocks, which is probably not what you wanted.

This problem can be avoided by using spin_Ilock_irgsave to disable interrupts on
the local processor while the lock is held. When in doubt, use the _irgsave ver-
sions of the primitives and you will not need to worry about deadlocks. Remem-
ber, though, that the £lags value from spin_lock_irgsave must not be passed to
other functions.

Regular spinlocks work well for most situations encountered by device driver writ-
ers. In some cases, however, there is a particular pattern of access to critical data

282

22 June 2001 16:39

Race Conditions

that is worth treating specially. If you have a situation in which numerous threads
(processes, interrupt handlers, bottom-half routines) need to access critical data in
a read-only mode, you may be worried about the overhead of using spinlocks.
Numerous readers cannot interfere with each other; only a writer can create prob-
lems. In such situations, it is far more efficient to allow all readers to access the
data simultaneously.

Linux has a different type of spinlock, called a reader-writer spinlock for this case.
These locks have a type of rwlock_t and should be initialized to
RW_LOCK_UNLOCKED. Any number of threads can hold the lock for reading at the
same time. When a writer comes along, however, it waits until it can get exclusive
access.

The functions for working with reader-writer locks are as follows:

read_lock(rwlock_t *lock);
read_lock_irgsave (rwlock_t *lock, unsigned long flags);
read_lock_irg(rwlock_t *lock);
read_lock_bh(rwlock_t *lock);
function in the same way as regular spinlocks.

read_unlock(rwlock_t *lock);
read_unlock_irgrestore(rwlock t *lock, unsigned long flags);
read_unlock_irg(rwlock_t *lock);
read_unlock_bh (rwlock_t *lock) ;
These are the various ways of releasing a read lock.

write_lock(rwlock_t *lock);
write_lock_irgsave(rwlock t *lock, unsigned long flags);
write_lock_irg(rwlock_t *lock);
write_lock_bh(rwlock_t *lock);
Acquire a lock as a writer.

write_unlock (rwlock_t *lock);
write_unlock_irgrestore(rwlock_t *lock, unsigned long
flags) ;
write_unlock_irg(rwlock_t *lock);
write_unlock_bh (rwlock_t *lock);
Release a lock that was acquired as a writer.

If your interrupt handler uses read locks only, then all of your code may acquire
read locks with read_lock and not disable interrupts. Any write locks must be
acquired with write_lock_irgsave, however, to avoid deadlocks.

It is worth noting that in kernels built for uniprocessor systems, the spinlock func-
tions expand to nothing. They thus have no overhead (other than possibly
disabling interrupts) on those systems, where they are not needed.

283

22 June 2001 16:39

Chapter 9: Interrupt Handling

Using Lock Variables

The kernel provides a set of functions that may be used to provide atomic (nonin-
terruptible) access to variables. Use of these functions can occasionally eliminate
the need for a more complicated locking scheme, when the operations to be per-
formed are very simple. The atomic operations may also be used to provide a sort
of “poor person’s spinlock” by manually testing and looping. It is usually better,
however, to use spinlocks directly, since they have been optimized for this pur-
pose.

The Linux kernel exports two sets of functions to deal with locks: bit operations
and access to the “atomic” data type.

Bit operations

It's quite common to have single-bit lock variables or to update device status flags
at interrupt time—while a process may be accessing them. The kernel offers a set
of functions that modify or test single bits atomically. Because the whole operation
happens in a single step, no interrupt (or other processor) can interfere.

Atomic bit operations are very fast, since they perform the operation using a single
machine instruction without disabling interrupts whenever the underlying platform
can do that. The functions are architecture dependent and are declared in
<asm/bitops.h>. They are guaranteed to be atomic even on SMP computers
and are useful to keep coherence across processors.

Unfortunately, data typing in these functions is architecture dependent as well.
The nr argument is mostly defined as int but is unsigned long for a few
architectures. Here is the list of bit operations as they appear in 2.1.37 and later:

void set_bit(nr, void *addr);
This function sets bit number nr in the data item pointed to by addr. The
function acts on an unsigned long, even though addr is a pointer to
void.

void clear_bit (nr, void *addr) ;
The function clears the specified bit in the unsigned long datum that lives
at addr. Its semantics are otherwise the same as set_bit.

void change_bit (nr, void *addr) ;
This function toggles the bit.

test_bit (nr, void *addr);
This function is the only bit operation that doesn’t need to be atomic; it simply
returns the current value of the bit.

284

22 June 2001 16:39

Race Conditions

int test_and_set_bit(nr, void *addr);

int test_and _clear_bit(nr, void *addr);

int test_and change_bit (nr, void *addr) ;
These functions behave atomically like those listed previously, except that
they also return the previous value of the bit.

When these functions are used to access and modify a shared flag, you don’t have
to do anything except call them. Using bit operations to manage a lock variable
that controls access to a shared variable, on the other hand, is more complicated
and deserves an example. Most modern code will not use bit operations in this
way, but code like the following still exists in the kernel.

A code segment that needs to access a shared data item tries to atomically acquire
a lock using either test_and_set_bit or test_and_clear_bit. The usual implementa-
tion is shown here; it assumes that the lock lives at bit nr of address addr. It also
assumes that the bit is either 0 when the lock is free or nonzero when the lock is
busy.

/* try to set lock */
while (test_and_set_bit(nr, addr) != 0)
wait_for_a_while();

/* do your work */

/* release lock, and check... */
if (test_and_clear_bit(nr, addr) == 0)
something went_wrong(); /* already released: error */

If you read through the kernel source, you will find code that works like this
example. As mentioned before, however, it is better to use spinlocks in new code,
unless you need to perform useful work while waiting for the lock to be released
(e.g., inthe wait_for_a_while() instruction of this listing).

Atomic integer operations

Kernel programmers often need to share an integer variable between an interrupt
handler and other functions. A separate set of functions has been provided to facil-
itate this sort of sharing; they are defined in <asm/atomic.h>.

The facility offered by atomic.h is much stronger than the bit operations just
described. atomic.h defines a new data type, atomic_t, which can be accessed
only through atomic operations. An atomic_t holds an int value on all sup-
ported architectures. Because of the way this type works on some processors,
however, the full integer range may not be available; thus, you should not count
on an atomic_t holding more than 24 bits. The following operations are defined
for the type and are guaranteed to be atomic with respect to all processors of an
SMP computer. The operations are very fast because they compile to a single
machine instruction whenever possible.

285

22 June 2001 16:39

Chapter 9: Interrupt Handling

void atomic_set(atomic_t *v, int i);
Set the atomic variable v to the integer value 1.

int atomic_read(atomic_t *v);
Return the current value of v.

void atomic_add(int i, atomic_t *v);
Add 1 to the atomic variable pointed to by v. The return value is void,
because most of the time there’s no need to know the new value. This func-
tion is used by the networking code to update statistics about memory usage
in sockets.

void atomic_sub(int i, atomic_t *v);
Subtract i from *v.

void atomic_inc (atomic_t *v);
void atomic_dec (atomic_t *v);
Increment or decrement an atomic variable.

int atomic_inc_and_test (atomic_t *v);

int atomic_dec_and_test (atomic_t *v);

int atomic_add_and_test(int i, atomic_t *v);

int atomic_sub_and_test(int i, atomic_t *v);
These functions behave like their counterparts listed earlier, but they also
return the previous value of the atomic data type.

As stated earlier, atomic_t data items must be accessed only through these func-
tions. If you pass an atomic item to a function that expects an integer argument,
you’ll get a compiler error.

Going to Sleep Without Races

The one race condition that has been omitted so far in this discussion is the prob-
lem of going to sleep. Generally stated, things can happen in the time between
when your driver decides to sleep and when the sleep_on call is actually per-
formed. Occasionally, the condition you are sleeping for may come about before
you actually go to sleep, leading to a longer sleep than expected. It is a problem
far more general than interrupt-driven I/O, and an efficient solution requires a lit-
tle knowledge of the internals of sleep_on.

As an example, consider again the following code from the short driver:

while (short_head == short_tail) {
interruptible_sleep_on (&short_gueue) ;
/* oo */

}

In this case, the value of short_head could change between the test in the
while statement and the call to interruptible_sleep_on. In that case, the driver will

286

22 June 2001 16:39

Race Conditions

sleep even though new data is available; this condition leads to delays in the best
case, and a lockup of the device in the worst.

The way to solve this problem is to go halfway to sleep before performing the
test. The idea is that the process can add itself to the wait queue, declare itself to
be sleeping, and then perform its tests. This is the typical implementation:

wait_queue_t wait;
init_waitqueue_entry(&wait, current) ;

add_wait_qgueue (&short_qgqueue, &wait) ;
while (1) {
set_current_state (TASK_INTERRUPTIBLE) ;
if (short_head != short_tail) /* whatever test your driver needs */
break;
schedule() ;
}
set_current_state (TASK_RUNNING) ;
remove_wait_queue (&short_gqueue, &wait);

This code is somewhat like an unrolling of the internals of sleep_on; we’ll step
through it here.

The code starts by declaring a wait_qgueue_t variable, initializing it, and adding
it to the driver's wait queue (which, as you may remember, is of type
wailt_queue_head_t). Once these steps have been performed, a call to
wake_up on short_qgueue will wake this process.

The process is not yet asleep, however. It gets closer to that state with the call to
set_current_state, which sets the process’s state to TASK_INTERRUPTIBLE. The
rest of the system now thinks that the process is asleep, and the scheduler will not
try to run it. This is an important step in the “going to sleep” process, but things
still are not done.

What happens now is that the code tests for the condition for which it is waiting,
namely, that there is data in the buffer. If no data is present, a call to schedule is
made, causing some other process to run and truly putting the current process to
sleep. Once the process is woken up, it will test for the condition again, and pos-
sibly exit from the loop.

Beyond the loop, there is just a bit of cleaning up to do. The current state is set to
TASK_RUNNING to reflect the fact that we are no longer asleep; this is necessary
because if we exited the loop without ever sleeping, we may still be in
TASK_INTERRUPTIBLE. Then remove_wait_queue is used to take the process off
the wait queue.

So why is this code free of race conditions? When new data comes in, the inter-
rupt handler will call wake_up on short_queue, which has the effect of setting

287

22 June 2001 16:39

Chapter 9: Interrupt Handling

the state of every sleeping process on the queue to TASK_RUNNING. If the
wake_up call happens after the buffer has been tested, the state of the task will be
changed and schedule will cause the current process to continue running—after a
short delay, if not immediately.

This sort of “test while half asleep” pattern is so common in the kernel source that
a pair of macros was added during 2.1 development to make life easier:

wait_event (wqg, condition);

wait_event_interruptible(wqg, condition);
Both of these macros implement the code just discussed, testing the condi-
tion (which, since this is a macro, is evaluated at each iteration of the loop)
in the middle of the “going to sleep” process.

Backward Compatibility

As we stated at the beginning of this chapter, interrupt handling in Linux presents
relatively few compatibility problems with older kernels. There are a few, how-
ever, which we discuss here. Most of the changes occurred between versions 2.0
and 2.2 of the kernel; interrupt handling has been remarkably stable since then.

Differences in the 2.2 Kernel

The biggest change since the 2.2 series has been the addition of tasklets in kernel
2.3.43. Prior to this change, the BH bottom-half mechanism was the only way for
interrupt handlers to schedule deferred work.

The set_current_state function did not exist in Linux 2.2 (but sysdep.h implements
it). To manipulate the current process state, it was necessary to manipulate the
task structure directly. For example:

current->state = TASK_ INTERRUPTIBLE;

Further Differences in the 2.0 Kernel

In Linux 2.0, there were many more differences between fast and slow handlers.
Slow handlers were slower even before they began to execute, because of extra
setup costs in the kernel. Fast handlers saved time not only by keeping interrupts
disabled, but also by not checking for bottom halves before returning from the
interrupt. Thus, the delay before the execution of a bottom half marked in an
interrupt handler could be longer in the 2.0 kernel. Finally, when an IRQ line was
being shared in the 2.0 kernel, all of the registered handlers had to be either fast
or slow; the two modes could not be mixed.

288

22 June 2001 16:39

Quick Reference

Most of the SMP issues did not exist in 2.0, of course. Interrupt handlers could
only execute on one CPU at a time, so there was no distinction between disabling
interrupts locally or globally.

The disable_irg_nosync function did not exist in 2.0; in addition, calls to dis-
able_irg and enable_irg did not nest.

The atomic operations were different in 2.0. The functions test_and_set_bit,
test_and_clear_bit, and test_and_change_bit did not exist; instead, set_bit,
clear_bit, and change_bit returned a value and functioned like the modern
test_and_ versions. For the integer operations, atomic_t was just a typedef for
int, and variables of type atomic_t could be manipulated like ints. The
atomic_set and atomic_read functions did not exist.

The wait_event and wait_event_interruptible macros did not exist in Linux 2.0.

Quick Reference

These symbols related to interrupt management were introduced in this chapter.

#include <linux/sched.h>
int request_irg(unsigned int irqg, void (*handler) (),
unsigned long flags, const char *dev_name, void
*dev_id) ;
void free_irqg(unsigned int irqg, void *dev_id);
These calls are used to register and unregister an interrupt handler.

SA_INTERRUPT

SA_SHIRQ

SA_SAMPLE_RANDOM
Flags for request_irq. SA_INTERRUPT requests installation of a fast handler
(as opposed to a slow one). SA_SHIRQ installs a shared handler, and the third
flag asserts that interrupt timestamps can be used to generate system entropy.

/proc/interrupts

/proc/stat
These filesystem nodes are used to report information about hardware inter-
rupts and installed handlers.

unsigned long probe_irg on(void) ;

int probe_irqg off (unsigned long) ;
These functions are used by the driver when it has to probe to determine
what interrupt line is being used by a device. The result of probe_irg_on must
be passed back to probe_irg_off after the interrupt has been generated. The
return value of probe_irq_off is the detected interrupt number.

289

22 June 2001 16:39

Chapter 9: Interrupt Handling

void disable_irqg(int irq);

void disable_irqg nosync (int irq);

void enable_irg(int irq);
A driver can enable and disable interrupt reporting. If the hardware tries to
generate an interrupt while interrupts are disabled, the interrupt is lost forever.
A driver using a shared handler must not use these functions.

DECLARE_TASKLET (name, function, arg);
tasklet_schedule(struct tasklet_struct *);
Utilities for dealing with tasklets. DECLARE_TASKLET declares a tasklet with
the given name; when run, the given function will be called with arg. Use
tasklet_schedule to schedule a tasklet for execution.

#include <linux/interrupt.h>
void mark_bh (int nr);
This function marks a bottom half for execution.

#include <linux/spinlock.h>
spinlock_t my_lock = SPINLOCK_UNLOCKED;
spin_lock_init (spinlock_t *lock);
spin_lock(spinlock_t *lock);
spin_lock_irgsave(spinlock_t *lock, unsigned long flags);
spin_lock_irg(spinlock_t *lock);
spin_lock_bh(spinlock_t *lock);
spin_unlock(spinlock_t *lock);
spin_unlock_irgrestore(spinlock t *lock, unsigned long
flags) ;

spin_unlock_irg(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock);
spin_is_locked(spinlock_t *lock);
spin_trylock(spinlock_t *lock)
spin_unlock_wait (spinlock_t *lock);

Various utilities for using spinlocks.

rwlock_t my_lock = RW_LOCK_UNLOCKED;

read_lock(rwlock_t *lock);

read_lock_irgsave (rwlock_t *lock, unsigned long flags);
read_lock_irg(rwlock_t *lock);

read_lock_bh(rwlock_t *lock);

read_unlock (rwlock_t *lock);

read_unlock_irgrestore(rwlock_t *lock, unsigned long flags);
read_unlock_irg(rwlock_t *lock);

read_unlock_bh(rwlock_t *lock);

290

Quick Reference

write_lock (rwlock_t *lock) ;
write_lock_irgsave(rwlock t *lock, unsigned long flags);
write_lock_irg(rwlock t *lock);
write_lock_bh(rwlock_t *lock);
write_unlock(rwlock_ t *lock);
write_unlock_irgrestore(rwlock_t *lock, unsigned long
flags) ;

write_unlock_irg(rwlock t *lock);
write_unlock_bh(rwlock_t *lock);

The variations on locking and unlocking for reader-writer spinlocks.

#include <asm/bitops.h>

void set_bit(nr, void *addr);

void clear_bit (nr, void *addr) ;

void change_bit(nr, void *addr) ;

test_bit(nr, void *addr);

int test_and_set_bit(nr, void *addr);

int test_and_clear bit (nr, void *addr) ;

int test_and_change_ bit (nr, void *addr);
These functions atomically access bit values; they can be used for flags or lock
variables. Using these functions prevents any race condition related to concur-
rent access to the bit.

#include <asm/atomic.h>

void atomic_add(atomic_t i, atomic_t *v);

void atomic_sub(atomic_t i, atomic_t *v);

void atomic_inc (atomic_t *v);

void atomic_dec (atomic_t *v);

int atomic_dec_and_test (atomic_t *v);
These functions atomically access integer variables. To achieve a clean com-
pile, the atomic_t variables must be accessed only through these functions.

#include <linux/sched.h>

TASK_RUNNING

TASK_INTERRUPTIBLE

TASK_UNINTERRUPTIBLE
The most commonly used values for the state of the current task. They are
used as hints for schedule.

set_current_state(int state);
Sets the current task state to the given value.

291

22 June 2001 16:39

22 June 2001 16:39

Chapter 9: Interrupt Handling

void add_wait_qgueue(struct wait_gqueue ** p, struct
wait_queue * wait)
void remove_wait_gueue (struct wait_gqueue ** p, struct
wait_queue * wait)
void _ _add_wait_gueue(struct wait_gqueue ** p, struct
wait_queue * wait)
void _ _remove_wait_gueue(struct wait_gqueue ** p, struct
wait_queue * wait)
The lowest-level functions that use wait queues. The leading underscores indi-
cate a lower-level functionality. In this case, interrupt reporting must already
be disabled in the processor.

wait_event (wait_queue_head_t queue, condition);
wait_event_interruptible(wait_gqueue_head_t queue, condi-
tion) ;
These macros wait on the given queue until the given condition evaluates
true.

292

