
PILS: A General Plugin and PILS: A General Plugin and
Interface Loading SystemInterface Loading System

PILS: A General Plugin and PILS: A General Plugin and
Interface Loading SystemInterface Loading System

A component of the Open A component of the Open
Clustering Framework Clustering Framework

Reference ImplementationReference Implementation

 Alan RobertsonAlan Robertson

IBM Linux Technology CenterIBM Linux Technology Center

alanr@unix.shalanr@unix.sh

AgendaAgenda
♦What is the OCF Reference Implemention?

♦Why plugins?

♦Goals and features of PILS

♦Why not other plugin software?

♦Sample PILS usage

♦Future Enhancements

Purpose: To give an overview of PILS for developers and
system architects.

TerminologyTerminology
♦OCF: Open Cluster Framework − a set

of standard clustering API being
developed

♦interface: a unique set of imported
and exported functions

♦implementation: a set of functions (in
a plugin) which provide a particular
interface

Note: A single plugin may implement
more than one interface

What is the OCF What is the OCF
Reference Reference

Implemenation?Implemenation?
♦The OCF reference implementation is a general

framework for implementing cluster management
systems based on the OCF APIs.

♦It is very general and open−ended.

♦It is oriented to making every major function
replaceable and configurable at run time.

♦The goal is to fork components, not the
framework.

Why Plugins?Why Plugins?
+Plugins allow great flexibility and help in

creating a powerful system.

+Plugins allow easy updates and new
capabilities to be added to running systems.

+Plugins encourage simpler system
architecture − vital for OSS projects.

+Plugins are ideal for an open−ended system
with open community participation.

Goals of PILSGoals of PILS
♦Be portable to other Operating Systems (OSes)

♦Be immediately usable (as a shared library) by
any project

♦Encourage reuse of plugins

♦Support many kinds of plugins simultaneously

♦Provide information on which plugins of a given
type are available

♦Allow a given shared object to provide several
interfaces

Features of PILSFeatures of PILS
♦Distinguishes plugins (.so files) from interfaces

(sets of functions).

♦Each interface exports a set of functions, and
imports a set of functions.

♦In addition, each plugin imports a standard set
of functions, and exports a standard set of
functions.

♦Plugin loading is by interface type/name.

♦Plugin unloading by reference count.

♦Built on top of libtool for maximum portability

Why invent a new Why invent a new
system?system?

♦Usable by any application as a library

♦Provide imports to plugins for
reusability and portability

♦Named (not #defined) plugin types

♦Highly portable system

Components of a PluginComponents of a Plugin

Sample Plugin UsageSample Plugin Usage
♦Goal: Load "md5" authentication ("HBauth") plugin

♦PILPluginUniv* PluginSys = NULL;
GhashTable* AuthFuncs = NULL;

PILGenericIfMgmtRqst Requests[] =
{"Hbauth" &AuthFuncs, NULL, NULL, NULL},
{NULL, NULL, NULL, NULL, NULL}};

/* Create Plugin Universe and load plugin
 * manager.
 */
PluginSystem = NewPIPluginUniv("/usr/lib/foo");

PILLoadPlugin(PluginSys,"InterfaceMgr",
, "generic", &Requests);

Sample Plugin UsageSample Plugin Usage
(continued)(continued)

♦

struct hb_auth_ops* Auth;
char result[64];

/* Load and use md5 plugin */
PILLoadPlugin(PluginSys,"hbauth","md5",NULL);

Auth = g_hash_table_lookup(AuthFuncs, "md5");

Auth−>auth(&authinfo, "SignMe", result
, sizeof(result));

/* Unload plugin */
PILIncrIFRefCount(PluginSys,"HBauth", "md5",−1);
Auth = NULL;

Sample PluginSample Plugin
♦

#define PIL_PLUGINTYPE Hbauth
#define PIL_PLUGIN md5
#define PIL_PLUGIN_S "md5"
static int md5_auth_calc(...);
static int md5_auth_needskey(void);
static struct HBAuthOps md5ops =
{md5_auth_calc, md5_auth_needskey};

/* Called before unloading */
static void md5closepi(PILPlugin* pi) { }

/* Called down to shut down the interface */
static PIL_rc md5closei(PILInterface* i, void*pp)
{ return PIL_OK; }

/* Standard boilerplate stuff */
PIL_PLUGIN_BOILERPLATE("1.0", Debug, md5closepi);

Sample PluginSample Plugin
(continued)(continued)♦

static const PILPluginImports* PiImports;
static PILPlugin* OurPI;
static PILInterface* OurIntf;
static void * IntImports, intprivate;

/* Plugin Initialization function */
PIL_rc
PIL_PLUGIN_INIT(PILPlugin* us

, const PILPluginImports* imp) {
PiImports = imp;
OurPI = us;

/* Register us as a plugin */
imp−>register_plugin(us,&OurPIExports);

/* Register our md5 authentication interface */
imp−>register_interface(us,"Hbauth","md5",&md5ops
, md5closei, &OurIntf, &IntImports, &intprivate);

}

Ideas for the FutureIdeas for the Future

♦Interface aliases

♦PATH−like plugin searching

♦Security awareness and checking

♦Cryptographically signed plugins

♦Interface version management

♦Independent project (if sufficient interest)

ReferencesReferences

♦http://linux−ha.org/download/

♦http://linux−ha.org/

♦http://opencf.org/

 Alan RobertsonAlan Robertson alanr@unix.shalanr@unix.sh
http://linux-ha.org/http://linux-ha.org/

Legal StatementsLegal Statements

♦IBM is a trademark of International Business
Machines Corporation.

♦Linux is a registered trademark of Linus Torvalds.

♦Other company, product, and service names may
be trademarks or service marks of others.

♦This work represents the views of the author(s)
and does not necessarily reflect the views of IBM
Corporation.

