
Linux−HA Heartbeat System Design

Alan Robertson − SuSE Labs − <alanr@suse.com>

ABSTRACT

One of the most commonly identified features which is felt to be necessary for
LinuxTM to be considered "enterprise−ready" is High−Availability. High−Availabil−
ity (HA) systems provide increased service availability through clustering techniques.

HA clusters minimize availability interruptions by quickly switching services over
from failed systems to working systems, providing the customer with an illusion of con−
tinuous availability. As such, high−availability features, are vital to mission−critical
systems. Although there are many components to a high−availability system, two of the
key components are heartbeat services and cluster communication services. Heartbeat
services provide notification of when nodes are working, and when they fail. In the
Linux−HA project, the heartbeat program provides these services and intracluster com−
munication services.

This paper describes the design of the heartbeat program which is part of the
High−Availability Linux Project with particular emphasis on the rationales behind key
design choices, and the results obtained.

Introduction

As LinuxTM1 grows into handling larger server sys−
tems satisfactorily, it will have to provide many of the
same services which these larger servers by Sun,
Compaq, IBM, and others have traditionally provided.
One of the key features which these larger and more
mission−critical servers have provided customers is
high−availability (HA) clustering.

A high−availability cluster is a group of computers
which work together in such a way that the failure of
any single node in the cluster will not cause the serv−
ice to become unavailable. Given this definition, it
seems obvious that it is necessary for the cluster to de−
tect when servers fail, and when they become
available again. This task is performed by code which
is usually called "heartbeat" code. In the case of
Linux−HA, this function is performed by a program
called heartbeat. Heartbeat programs typically send
packets to each machine in the cluster to indicate that
they are still alive.

Another of the most basic functions which any
High−Availability system must perform is cluster
communications. It is often the case that these com−
munications need to communicate between all cluster
members at once in a broadcast or multicast sense.

The Linux−HA heartbeat program takes the ap−
proach that the keepalive messages which it sends are
a specific case of the more general cluster communi−
cations service. In this sense, it treats cluster
membership as joining the communication channel,

1 Linux is a trademark of Linus Torvalds.

and leaving the cluster communication channel as
leaving the cluster. Because of this, the heartbeat
messages which are its namesake are almost a side−
effect of cluster communications, rather than a sepa−
rate standalone facility in the heartbeat program. It
should be emphasized that heartbeat should not be
understood as a complete cluster management solu−
tion, but a basic component providing certain well−
defined low−level services. These services are out−
lined in more detail below.

Heartbeat Design Philosophy

The heartbeat component of the Linux−HA project
[Rob00] is in some senses a simple program. It is one
of the the lowest−level components of the system, and
has the purpose of being reliable, so it is important that
it be simple and straightforward. It should be designed
to run continuously for years without memory leaks, or
bugs. It needs to be easy to understand, easy to debug,
and extremely robust. For this reason, when design
alternatives were considered, the simplest, most
straightforward, and easiest to debug were often cho−
sen.

Even though this low level subsystem is reasonably
simple, there are some non−obvious design decisions
and synergies which were made which appear to be
worth understanding. It is the intent of this paper to
explore some of these elements of the design, and talk
about how it may be extended in the future.

Definitions

The following definitions will prove useful in the
discussion of the design of the Linux−HA heartbeat
program.

Hear tbeat Subsystem
A subsystem which monitors the presence of nodes

in the cluster through a series of keepalive, or heart−
beat messages.

Cluster Manager
A subsystem which manages the cluster, deciding

which resources are on which nodes, and taking ap−
propriate action during cluster transitions. In this
document, this term is used to refer to an entire range
of cluster functions and services which are direct or
indirect clients of heartbeat’s API.

Cluster Transition
A cluster transition occurs whenever a cluster mem−

ber enters or leaves the cluster. This event triggers
recovery and reconfiguration actions by the cluster
management software.

Low−Level Services in High−Availability
Systems

Every high−availability system needs two basic
services: to be informed of cluster members joining
and leaving the system, and to provide basic commu−
nication services for managing a cluster. As is
discussed below, there is considerable synergy be−
tween these two functions. In the discussion below,
application data is specifically excluded from consid−
eration. All that is under discussion here is cluster
control data, that is, data used for managing and con−
trolling the configuration of the cluster.

Low Level Cluster Membership

The lowest level concept of cluster membership is
typically founded on the idea of reachability: Can we
communicate with node X? If so, it is considered to
be a member of the cluster. If not, it is considered
"dead". Towards this end, one conventionally creates
a heartbeat subsystem to determine if nodes are alive
or dead. In such a system, each machine which is ac−
tively a part of the cluster creates heartbeat messages
on a periodic basis, and sends them out to all cluster
members. Any machine whose heart can no longer be
heard to beat (i.e., from whom messages are no longer
heard) is considered to be "dead", or have left the
cluster. Such events (members leaving or joining the
cluster) trigger cluster transitions.

Typically, this means sending out messages from

every machine to every machine on a periodic basis
(perhaps once per second or so). For large clusters,
there is considerable advantage in using multicast or
broadcast techniques to avoid the traffic associated
with the O(N2) operation of sending messages from
every machine to every machine. In a stable high−
availability system (one not in the midst of a transi−
tion) these messages are virtually the only messages
being sent. Indeed, these messages constitute the
overwhelming majority of the communications traffic
in a cluster system. Therefore, although these mes−
sages are simple, in large clusters, become quite
voluminous if not handled carefully. Ultimately, this
lowly heartbeat function can limit the scaleability of a
high−availability system, particularly if not handled
efficiently.

Note that this form of low−level (or local) cluster
membership is not sufficient for a complete cluster
management infrastructure, it needs to be combined
with the idea of consensus or agreement wherein the
members of the cluster communicate with each other
and exchange their views of cluster membership, re−
sulting in a cluster−wide view of cluster membership.
This is discussed further in the Future Directions sec−
tion later in this paper.

Communications in High−Availability
Systems

Every high−availability cluster has needs to com−
municate in order to operate. This communication
varies in content and size depending on the particular
cluster management system being used in the cluster.
As an example, the current heartbeat code has a mes−
sage type to request that a particular resource group be
relinquished, and a corresponding response message.
Other resource−related messages also commonly occur
during cluster transitions. Although this depends
greatly on what cluster management model the cluster
has adopted, the majority of (non−heartbeat) cluster
management messages are associated with cluster
transitions.

Since cluster management is typically transaction
oriented, with the transactions spanning the entire
cluster, it is common to communicate with all nodes in
the cluster simultaneously. For example, one node
might note an event which should trigger a cluster
transition. This node would then notify all nodes in
the cluster to enter a cluster transition. In this process,
it would typically send a message to all cluster mem−
bers, and then await messages from all cluster
members acknowledging this message.

This is typical of cluster management messages. Th
ey typically have a transactional nature across the en−
tire cluster. The most common pattern is to send a

message to all nodes, and then await responses from
all nodes participating in the event. This is the model
IBM follows in their Phoenix HA system. A similar
model is followed by TweedieCluster barrier services.
If you combine this observation with the information
that heartbeat information is typically broadcast to the
entire cluster, it becomes readily apparent that by far
the majority of high−availability packets are sent to
the entire cluster. To give some sense of how rarely
unicast packets occur, it would be surprising if as
many as 1 packet in 100 in a normally−operating HA
system is a unicast packets.

Communication Reliability

Cluster communications are the backbone around
which one builds a high−availability system. If they
are not reliable, then it is quite obvious that the cluster
itself will will not be reliable. Indeed, there is a whole
class of problems around cluster partitioning (also
called split−brain syndrome) which are made signifi−
cantly less likely by good cluster communications.

It is normally considered desirable to detect a clus−
ter node failure within seconds. For example, in
Microsoft’s WolfPack system, the time to discover a
node is dead is less than 5 seconds. In practice, this
means that heartbeat messages should be delivered in
significantly less than this amount of time, even in the
presence of single communication failures. Unfortu−
nately, this is difficult with routing protocols, which
are generally tuned to less stringent requirements, and
aren’ t keyed to providing this information to an inte−
grated system. Routing protocols also only deal with
IP packets, which don’ t include "raw" serial ports.
Since the code avoids relying on routing protocols for
failover, potentially complex interactions between the
configuration of a cluster’s internal communication
channels and the configuration of the surrounding net−
work are minimized.

Moreover, in HA systems, one also wants to know
that the backup links are also still working, and report
this information to the cluster administration system.
This significantly reduces the chances of multiple fail−
ures from which the cluster cannot recover. For
example, if someone unplugs a backup communica−
tions cable and a month or two later, the primary
communications link fails, the system will be unable
to communicate. This failure to communicate would
have been completely avoidable by reporting the fail−
ure of backup links as well as the failure of active
communication links. In this way, the backup link can
be repaired before the primary link also fails.

Many cluster systems also implement heartbeat
mechanisms which work on independent communica−
tion methods (for example, raw serial ports) in

addition to supporting ethernet for heartbeats. This is
considered a best current practice, and is strongly rec−
ommended by the Linux−HA HOWTO [M ilz99]. The
reasons for this are several fold:

� Failures in the IP communication subsystem
are unlikely to affect the serial subsystem

� Serial ports do not require complex external
equipment or external power

� Serial ports are simple devices and very reli−
able in practice.

� Serial ports can be easily dedicated to cluster
communications, and are not subject to sig−
nificant variability in message delivery
latency due to exponential backoff algorithms
required by CSMA/CD media like ethernet.

� It is difficult to accidentally unplug a properly
screwed−in serial connector.

However, in spite of these advantages, it should be
understood that serial port communication is less
well−suited for large clusters, and should be viewed as
simply another tool in the tool box, to be used where it
is appropriate. Large clusters may need very high
speed UARTs, or nearest−neighbor heartbeat tech−
niques which minimize required bandwidth.

Summary of Cluster Communications
Observations

� Heartbeats (keepalives) are the overwhelming
majority of non−application cluster control
messages.

� The overwhelming majority of all cluster
messages go to all cluster members

� Cluster transition messages commonly consist
of a cluster−broadcast message, with a set of
unicast results.

� Reliable communications are essential in a
cluster

� Single communications failures should not
disrupt cluster communications even momen−
tarily

� Backup communications methods should be
frequently verified for correct operation, and
failures reported through the administration
interface.

� Multiple, independent communication paths
should be supported by the software, serial
ports being the most common alternative
choice

� In general, simple methods are preferred to
complex methods

These are the primary considerations which led to

the communications design which heartbeat imple−
ments.

Major Heartbeat Design Decisions

� Support many types of communication proto−
cols, including non−IP protocols like raw
serial ports

� Send all messages across all communications
paths all the time. Report link failures, even
when redundant links are still working.

� Send all messages to all nodes all the time. Ig
nore messages for other nodes.

� Support reliable multicast messaging
� Use heartbeat messages as keepalives on the

communications links in the design of the re−
liable messaging.

Although it is apparent at this point why most of
these design decisions were made, the last design de−
cision is not yet obvious from the text presented
above. To fully understand the what this means and
why it was chosen, a more full exposition of the mul−
ticast protocol must be given. This will be given in
the next section.

The particular type of serial port implementation
chosen configures the serial ports in a bidirectional
ring, similar to a FDDI ring. In this configuration, the
number of nodes in the cluster are limited by the speed
the serial ports can be run. For current message sizes,
and links running at 56 Kbits/sec, this limits the maxi−
mum size of clusters that rely on serial ports to
something over 30 nodes. This is a fairly respectable
cluster size. Of course, care must be taken with sys−
tem placement or the wiring of such a serial ring will
become unmanageable long before this limit is
reached.

Heartbeat’s Reliable Multicast Protocol

Protocols have a number of characteristics which
can be used to describe them. The current heartbeat
protocol has the following characteristics:

� Multicast−aware
� Guaranteed packet delivery
� Packet ordering is not guaranteed
� Flow or congestion control is not provided

Although the reasons for the first two decisions are
readily apparent from the nature of a high−availability
cluster as discussed above, the latter two are not so
immediately obvious. At this point, packet ordering is
not required because of the strict request/response na−
ture of the cluster management functions which might
be put on top of it. This also obviates the need for
flow control, since further packets are not typically

sent until responses are received from previous pack−
ets.

There are basically two techniques described in the
literature [Weiss00], [Dan94], [Ram87] for designing
multicast protocols:

� Sender−initiated
� Receiver−initiated

In sender−initiated multicast protocols, the receivers
of data typically send acknowledgments for packets.
The sender then maintains timers and retransmits
packets for which acknowledgments are not received
within some fixed period of time. This class of proto−
cols is subject to flooding senders with
acknowledgments with every single packet sent. P. B.
Danzig [Dan94] designates this flooding phenomenon
as sender (or ACK) implosion. The fact that it occurs
consistently with every packet sent is burdensome and
makes this technique unsuitable for use in heartbeat,
since it occurs at every machine with every packet,
and could double the number of packets sent. Because
of timing considerations, media collisions are very
likely to be generated in large quantities as well.

In receiver−initiated protocols, the receivers of
communications are responsible for detection of er−
rors. In this scheme, sequence numbers are used to
detect packet loss. When a lost packet is detected, the
receiver requests that the sender retransmit the packet.
In this method, senders are subject to being flooded
with NACKs (NACK implosion) if the packets do not
reach any receivers. This can lead to a high load on
the sender, and excessive retransmissions. In 1987
Ramakrishnan et al. proposed a scheme to avoid
NACK implosion [Ram87]. In this scheme, retrans−
missions are limited by timers.

A variant of this scheme is implemented in heart−
beat. In heartbeat, each receiver requests a packet’s
retransmission no more than once per second, and in
turn, each sender will re−transmit (by cluster broad−
cast) each packet no more than once per second as
well. In this way, NACK implosion is strictly limited.
HA control protocols do not have many of the require−
ments of some of the secure multimedia streaming
protocols such as RTP [Weis00].

In an HA cluster, non−heartbeat control messages
are rare. In some cluster management structures, no
control messages are sent until a failure (cluster tran−
sition) occurs. This means that it could be many
months or even years between messages. This can
make detection of lost packets by sequence numbers
problematic. As a result, it is quite useful to transmit
the heartbeat messages using the same communication
channel as the control messages, and share the same
sequence numbers. This comes from the fact that
heartbeat messages are transmitted on a frequent,

regular schedule. In this way strong bounds are placed
on the amount of time which might elapse before a
lost packet is detected. If the heartbeat messages did
not ride across the same channel as normal messages,
this would be more complex to guarantee.

This provides significant synergy between heartbeat
communication and higher−level messages, and sim−
plifies the implementation of the protocol. Indeed,
this approach has been quite effective, and has limited
the corresponding protocol code in heartbeat to a few
hundred lines of code.

Heartbeat’s Authentication Scheme

Since cluster members must be able to trust each
other completely, a cluster communication system
needs to have either physically secure communica−
tions, or communications which cannot readily be
spoofed. Depending on the cluster manager, it is easily
possible that one node in the cluster might ask another
node to stop serving a particular IP address, or shut
down completely, or reboot, or perform various ac−
tions with serious consequences. In some respects,
allowing a node to masquerade as a cluster member is
tantamount to letting it be root on all of the cluster
members. A cluster communications channel then be−
comes a way to crack a machine, and effectively
become root. Heartbeat’ s design intent includes the
idea of avoiding adding another route to crack the sys−
tems in a cluster. To address this issue heartbeat
digitally signs every packet, and implement a few pre−
cautions in the protocol code to deter replay attacks.

It comes supplied with the following default signa−
ture algorithms:

� 32−bit CRC (for physically secure networks
only)

� MD5
� HMAC−SHA1 (believed to be the most se−

cure of the three)

As described previously, an HA cluster is a con−
tinuously−running multicast system. Unlike many
multicast systems, it is largely symmetric, with every
node sending approximately the same number of mes−
sages, and most of them going to the entire set of
members. One of its unique features is that the com−
munication layer is intended to run indefinitely,
hopefully for many years without interruption. This
includes the need to be able to do various kinds of
maintenance operations without ever taking down the
entire cluster. These things should include:

� Changing keys
� Changing authentication methods
� Adding new authentication methods

These properties can be problematic, and to the
author’s knowledge are not all solved by any standard
multicast protocol. The next section elaborates on
heartbeat’ s solution to these problems, on the details
of the authentication protocol, and how, together with
the low level protocol, various kinds of attacks are
made more difficult. It is worth noting that one of the
reasons for publishing the details of this protocol is
that it is hoped that feedback will be received which
will help further improve the security and authentica−
tion in heartbeat.

The Problem of Changing Keys

As noted above, it is necessary to be able to change
keys, key types, and even add new authentication
methods without taking the entire cluster down. In or−
der to implement this, a key file called authkeys is
used which contains the following information:

� signature method and key to sign outgoing
packets with

� signature methods and keys which will be ac−
cepted on incoming packets

Note that each packet is signed with a single signa−
ture type, but each node will authenticate incoming
packets which are signed with any of set of signature
types. This allows one to change keys gracefully in a
system by following the steps below:

1. Initial state. Every node signs with the "old"
key, and only accepts the "old" key.

2. Distribute a new authkeys file to each ma−
chine which signs with the "old" key, but
accepts the old and new keys

3. Activate the new authkeys on each machine,
and wait for it to be activated on each ma−
chine.

4. Distribute a new authkeys file to each ma−
chine which signs with the "new" key, but
accepts the old and new keys

5. Activate the new authkeys file on each ma−
chine, and wait for things to "settle out".

6. Distribute a new authkeys file to each ma−
chine which signs with the new key and
accepts only the new key.

7. Activate the new authkeys file.

There is only one detail not well explained by the
above description. What is the settling interval, and
why is it there? The settling interval occurs because
packets signed with the old key may still be present in
the communications system, and unless sufficient time
is allotted, they may be (re)transmitted and not be ac−
cepted by the other members of the cluster. How long
this interval should be depends on the details of how
the reliable multicast protocol works. In the current

implementation, 100 seconds is sufficient for this step
in the worst possible case. This settling interval could
be eliminated by resigning all packets saved for possi−
ble retransmission with the new key.

Adding new authentication methods can be added to
heartbeat without recompiling the binary, because the
authentication methods are now dynamically linked
into the code, and will be loaded when it needs to do
so without restarting the program.

Authentication Information in Packets

Each packet is signed with a field called the "auth"
field. This field contains two subvalues: a number
representing the authentication method along, with the
signature value (a string) The number representing the
authentication method does not have a fixed mapping
to a particular authentication method. Attackers who
see the packet cannot readily tell which authentication
method is being used. If more methods are added, this
will add more difficulty to the attackers job. If an in−
dividual site wishes to add security−through−
obscurity, one can always add some undocumented
methods to make the job of brute force attack of the
key space somewhat more difficult for the amateur
cryptographer.(or script kiddee). As an additional
benefit, the authentication methods also detect packets
which have been corrupted by simple media errors, al−
lowing the heartbeat protocol to reliably run across
media like serial ports which do not verify data integ−
rity themselves.

Replay Attacks

If an attacker can mount an active attack (sniffing
and injecting packets) on the heartbeat subnet, then
they can initiate a replay attack, in which properly
authenticated packets which were previously sent are
resent, with potentially serious effects. In a replay at−
tack, the attacker sniffs packets from the heartbeat
subnet, then resends them at an opportune time later,
so that those packets are taken as genuine. This can
cause the cluster to give up resources, or shut down, or
take any number of actions which might have been
appropriate at some point in the past, but which should
not be carried out now under the control of an attacker.

Initially, after putting in the authentication code, the
possibility of replay attacks was ignored for the fol−
lowing reasons:
� Very few messages have the possibility of having

any impact if replayed. (they occur only rarely)
� Sniffing the local subnet was thought to be difficult

in practice for a cluster subnet.

However, others made convincing arguments why
this protection was too weak:
� It is possible through various attacks to cause one

of the cluster member to crash using one of the
known denial of service attacks, creating a situa−
tion where messages with serious consequences are
generated on demand.

� It is desirable to add multicast heartbeats to heart−
beat, in which case there are potentially many
more places to sniff the traffic than there are in the
broadcast case.

These arguments were found to be convincing. Som
ething needed to be done. In the original code, reset−
ting sequence numbers was simply assumed to be a
link reset, so an attacker could capture packets around
a link reset (which almost always involve serious ac−
tions) and replay them. As a result, a change was
devised to the packet management code which is be−
lieved to make replay attacks impossible. Each time a
sequence number reset is performed, the new version
of heartbeat increments an instance number. The
handling of packet sequence and instance numbers fall
into the following categories:
� Packets with a higher sequence number than seen

before and a current instance number: treated as
received

� Packets known to be missing: treated as received
� Packets with new instance numbers: treated as a

protocol restart.
� Recent, duplicate packets: ignored
� Packets with "old" sequence numbers or instance

numbers: ignored and flagged as a possible replay
attack

Heartbeat Message Format

It is the purpose of a high−availability system to be
available without interruption for years, through hard−
ware and software upgrades. Consequently, one of the
tasks that a cluster system must undertake is on−the−
fly upgrades. Towards this end, it is necessary that old
versions of the software should be able to accept mes−
sages from new versions of the software, and ignore
fields in the messages which they do not understand.
This is an undertaking of moderate difficulty, requir−
ing careful thought on the design of new messages to
be sent in the cluster and how they will be interpreted
by the old software.

In this design, a communications system like heart−
beat can be of some help. Some message formats are
designed to easily allow software to ignore fields they
don’ t understand, and yet still find the information

they need in the fields they do understand. Towards
this end, messages in the heartbeat system are de−
signed in a fashion similar to the environment strings
which UNIXTM2 supplies to processes.

In this format, each message consists of a set of
ASCII (name, value) pairs. New message formats
most commonly add new (name, value) pairs. In some
cases, it is desirable to effectively change the seman−
tics of a given name. When this situation occurs, there
are various techniques available to handle it. One of
the most common ones is to have the new version of
the software continue to supply the old name seman−
tics through the old name, and redundantly supply a
new name, and the new semantics associated with it
through the new (name, value) pair.

Although there are various techniques to deal with
this situation, this message format has the advantage
of being very simple, easy to understand, and yet very
flexible. As a bonus, it is a simple matter to provide
the contents of a message to a shell script.

The message format heartbeat adopted is simple,
and easy to understand, but has a few disadvantages.
ASCII data is bulky, and having names in every mes−
sage makes it more so. This extra bulk is primarily of
concern for heartbeat messages, which constitute the
majority of data in the cluster communication. This
has been made a little less problematic by choosing
short field names for the fields found in heartbeat
messages. This trades message bulk off against a little
obscurity for heartbeat messages. With strong authen−
tication, current heartbeat messages are approximately
150 bytes in size. It is believed that this size of mes−
sage is small enough to justify the design chosen.

Heartbeat API

The initial implementation of heartbeat had a very
simple prototype API for communication with man−
agement layers of the cluster. In this API, each cluster
message caused the invocation of a process to which
the message was given. Simple rules were used for
filtering out heartbeat messages in which no state
changed (i.e., weren’ t associated with a node entering
or leaving the cluster). This interface is extremely ef−
fective and easy to put together scripts to manage a 2−
node cluster. This prototype communication mecha−
nism proved adequate for some simple purposes, and
allowed easy assembly of a very basic (some might
say crude) cluster manager for two nodes.

However, a more sophisticated cluster management
functions need more state information, and need to be
continuously running in order to negotiate with other
nodes. This is a critical need for clusters with greater

2 UNIX is a trademark of SCO.

than two nodes. The prototype API fell short in many
respects. These include:

� Ability to support more than one client proc−
ess

� Ability to monitor and query the current state
of the cluster

� Ability to adequately isolate the client process
from the implementation details

� Ability to communicate with a continuously
running process.

� Ability to write an independent communica−
tions debugger

� fork/exec is unreliable under heavy load

Since the prototype API was designed as a vehicle
for demonstrating heartbeat, none of these limitations
came as any surprise. At the time of this writing, this
new heartbeat API has been implemented and is now
in the testing phase. This API provides the following
basic services:

� Obtain node and link status
� Observe changes in node and link status
� Send reliable messages to other nodes
� Receive reliable messages from other nodes
� Keep multiple users of the API from interfer−

ing with each other.
It is expected that this API will allow heartbeat to

become useful in a wide variety of circumstances,
ranging from normal HA operations, through integrat−
ing with other cluster managers, through integrating
with cluster file systems.

STONITH Implementation

On the linux−ha mailing list, the term STONITH
has been used to describe a technique for I/O fencing
which allows one to guarantee exclusive use of a set of
shared resources. STONITH stands for Shoot The
Other Node In The Head. This technique allows
cluster systems to safely use shared disk arrangements.
An API has been defined for this technique, and an
implementation was created. Although it is useful
now, it will be more useful in the future, with a new
cluster management infrastructure. At this point, the
API and implementation will appear in heartbeat and
several other open source cluster managers.

Future Directions

There are many possibilities on the horizon for
heartbeat. These possibilities have been considerably
broadened by the recently introduced API. These in−
clude.

True multicast
Currently, heartbeat does all of its UDP communi−

cation using broadcast packets. This limits the cluster
to being all on one subnet, and causes unnecessary in−
terrupts on machines which are on the subnet but not
part of the cluster. It would be good to implement
multicast communications in order to alleviate these
concerns.

Automated key distr ibution and management
At the present time, it is necessary for all the mem−

bers of the cluster to have their authentication data
updated manually. It would be desirable to have a
way to distribute keys across the cluster, perhaps using
openssh or some similar mechanism.

Integration with L inuxFailSafe
SGI and SuSE have made SGI’s FailSafe product

available on Linux as an open source software package
[Vas00]. Although LinuxFailSafe currently has heart−
beat and membership mechanisms of its own, there are
enough things that heartbeat does better, that it is ex−
pected to prove desirable to replace portions of
FailSafe with heartbeat.

GUI tools
There are at least two efforts underway to add a

GUI configuration and status front end to heartbeat.
Conectiva has written a linuxconf module for heart−
beat, and David Martinez has prototyped a GUI
configuration tool for it [Mar00].

Cluster Consensus Membership
Heartbeat provides only a local view of cluster

membership. That is, it only knows about or is aware
of each node’s own individual view of the cluster
membership. This is adequate for some purposes, but
inadequate for many. If the local medium has no
communication asymmetries, and the same configura−
tion, then there is no difference between the local and
the global view.

However, if communication is impeded due to hub
or switch bugs or routed multicasts, then it is possible
for different members of the cluster to have differing
views of what the membership of the cluster actually
is. It is important that every member of the cluster
have the same view of cluster membership as every
other member. It is necessary to have a consensus
membership layer which then shares cluster member−
ship information across the cluster, so that each
machine has the same view of the cluster membership.

Barr ier API implementation
Certain kinds of clusters use the model of barriers in

their implementation. The TweedieCluster is an ex−
ample of such a cluster [Twe00]. According to
Tweedie, a barrier provides a guaranteed synchroniza−
tion point in distributed processing which is valid over
all nodes in the cluster: it strictly divides time into a
pre−barrier and a post−barrier phase. The barrier may
not necessarily complete at exactly the same time on

every node, but there is absolute guarantee that the
barrier will not complete on any node unless all other
nodes have begun the barrier. The barrier API he de−
scribes could easily be implemented on top of the
heartbeat API.

Phoenix n−phase transactions
IBM’s Phoenix Cluster technology has the concept

of providing a tool kit to implement generalized n−
phase transactions to achieve synchronization across
the cluster [Pfi98]. These are similar in function to
the barrier API described above, but are more general.
In this model, a transaction is begun in which a ma−
chine names a next state. Each node participating in
the transaction then sends a message nominating the
next state. When all nodes have reported the next
state, then the transaction proceeds to the next phase.
If the membership changes or any node nominates a
differing next state during this time, the transaction is
aborted. If this does not happen, the transition to the
next state is accomplished, and the process is repeated
until a final state is achieved. The idea of a general−
ized synchronization mechanism seems like a very
good idea, and one worth emulating in the Linux−HA
environment. This mechanism could be implemented
on top of a barrier API, or using the heartbeat API di−
rectly.

Dynamic loading of modules
Much of the code in heartbeat consists of modules

which are invoked through table lookups. These mod−
ules provide services which it would be desirable to
add dynamic loading so that new modules could be
added to heartbeat without restarting the services. In
order to ensure reliable heartbeat services in the pres−
ence of ill−behaved applications, heartbeat runs
locked into memory, and at high priority. Because of
this, it is desirable to minimize the amount of memory
which heartbeat used. Replacing the static linking
which heartbeat uses with dynamic linking would help
in this effort.

It is anticipated that heartbeat would benefit from
dynamically loading at least the authentication meth−
ods, heartbeat media drivers, and STONITH
implementations. At this point in time, the imple−
mentation of dynamic loading is being tested.

Ping membership
For two−node systems, it is often desirable to have a

resource which can be used as a quorum resource, so
that one can guarantee that only one of two partitions
of a cluster can be active at a time. Since Linux−HA
systems are intended to achieve very low deployment
costs, it is undesirable to add a third node solely for
the purpose of breaking ties. As a result, it would be
desirable to allow relatively unintelligent devices
which are already present on the customer’s site to act
as pseudo−cluster members. For these devices to par−

ticipate as members, a new class of membership would
be added to heartbeat: ping membership. Whenever
the local system would send out its heartbeat, a ping
packet would be sent to the pseudo−member. When−
ever a ping response is received, it would be translated
into a heartbeat message. The result of this is that
such devices could effectively act as tie−breakers in
the case of 2−node quorum systems. Candidates for
such devices include switches, routers, and ethernet−
accessible intelligent power controllers or other pinga−
ble devices. There are problems potentially associated
with this approach: It is possible (through ARP cache
problems for example) for each of two nodes to be
able to communicate with a common endpoint, yet be
unable to communicate with each other. At this time,
an implementation of this technique has been proto−
typed and further research will be done to see if there
is a variant on this technique which would be helpful
in solving these difficulties.

External Cluster Manager
Heartbeat’ s current cluster manager was originally

prototyped to demonstrate heartbeat. It is unsophisti−
cated and very limited in its function. However, the
introduction of the heartbeat API opens up the possi−
bility of providing a "real" cluster manager, or a series
of them. It is expected that heartbeat will drop its
primitive cluster management facility in favor of ex−
ternal cluster management. As a result, this current
implementation is not discussed here.

Design Retrospective

The previous sections describe the positive reasons
why the design decisions were made without signifi−
cant references being made to the corresponding costs
or disadvantages. This section will explore these
costs, and comment on the design of these key ar−
eas. Some of the areas addressed here were pointed
out by the readers of the linux−ha−dev mailing list.

Communication using PPP
Initially, the heartbeat code was implemented di−

rectly on top of the serial device. Later on it was
suggested by Stephen Tweedie and Alan Cox that PPP
might be a better choice for using the serial ports.
This seemed worth trying, so it was implemented.
Unfortunately, there were several problems which re−
sulted. These problems include: PPP unreliability,
slow startups, code complexity, and PPP hangs. In a
small percentage of cases, PPP would not start at all,
and had to be killed and restarted, sometimes on both
ends. Even when it does start correctly, PPP can take
up to seven seconds to start. This makes hangs slow to
detect, and delays starting up the cluster. Sometimes,
for no apparent reason, PPP would stop transmitting in
one direction for no apparent reason and with no obvi−

ous symptoms. These bugs and behaviors in PPP
make it a poor choice for use in highly reliable sys−
tems. These problems exist today, and have existed
for more than a year in the Linux PPP implementation.
The workarounds for all these problems make the PPP
transport module in heartbeat about twice as large and
complex as the corresponding code for any other me−
dium, in addition to being unreliable.

Code Size
Although the heartbeat code has proven quite ro−

bust, various people have asked questions about its
size. On i386 Linux, the object size is approximately
128K including all heartbeat media, authentication
methods, STONITH methods, the API, and the code
for the prototype cluster management function. This
breaks down to lines of commented source like this:
4000 lines for core function, 800 lines for messaging
functions, 600 for authentication, 1000 for parsing
configuration files, 2000 lines for handling different
transport media (over half of which is PPP code), 1400
for the heartbeat API. At this point, it seems to be
eminently maintainable. The recently−added ability to
dynamically load modules will minimize memory us−
age while allowing for more growth in capabilities.

Flexibility
It has proven to be quite simple to add new heart−

beat media types, authentication types, message types
and features to heartbeat. Much of the code is table−
driven, and is overall quite straightforward and simple
to extend and change. Indeed, one of the unexpected
problems associated with writing this paper has been
that many things have changed and been implemented
while it was being written, causing it to have to be up−
dated continually.

Bandwidth usage
One of the concerns which been expressed concern−

ing the design of heartbeat is that its combination of
ASCII message format makes for verbose heartbeat
messages. The concern is specifically that it might
become a bandwidth hog as cluster sizes grow.

The formula for computing bandwidth used by
heartbeat for N nodes on an unswitched network is as
follows:

Bhb= Shb * 8 bits/byte Rhb * N

Where Bhb is the bandwidth consumed in bits/sec,
Shb * is the size of a heartbeat’s packet in bytes, Rhb is
the rate of heartbeat per cluster node, and N is the
number of nodes in a cluster. A common heartbeat
rate is 1 packet/sec, heartbeat packets average around
150 bytes. If a cluster has 1000 nodes with these other
characteristics, then the Bhb for such a system is 1.2 x
106 bits/sec. This is approximately 1.2% of the band−
width available on an unswitched 100 Mbit network.
It is clear from this calculation that fears about heart−

beat bandwidth consumption are unfounded for realis−
tic−sized clusters. On the other hand, it is also clear
from this calculation that this same bandwidth would
significantly overwhelm a normal PC serial connec−
tion.

Reliability
Although released versions of heartbeat have had a

few bugs, they have largely exhibited themselves con−
sistently on system startup or not all. The result of this
is that heartbeat has proven itself to be quite reliable
in actual field usage.

Protocol L imitations
The current heartbeat protocol guarantees that

packets are delivered to every active node, or that the
client is notified of the death of the nodes to which it
isn’ t delivered subject to resource limitations. How−
ever, these packets are not guaranteed to be delivered
in any particular order, nor is any flow control pro−
vided. The packet delivery order problem is relatively
easily solvable should that prove desirable. The flow
control issue is not expected to be a problem in the
domain for which this protocol is designed (high−
availability control messages). However, if a client
were sufficiently ill−behaved it is possible that it could
exhaust packet retransmission facilities, resulting in a
packet not being delivered. In practical tests with
well−behaved clients and extraordinary packet loss
rates (90% on transmission, and 90% on reception),
this behavior could not be induced in many hours of
testing.

Secur ity
Because it was designed from the ground up to op−

erate in the cracker−rich internet environment as an
open source Linux package, it is one of the more se−
curity−conscious high−availability implementations
available. Although it makes no attempt to encrypt
data because of repressive US laws on encryption, it
does make good use of strong authentication protocols.

Perhaps too successful
One of the most interesting and curious criticisms of

heartbeat is that it has been too successful. What was
meant by this was that heartbeat solved a wide−
enough class of problems sufficiently well that there
was little motivation to create an alternative solution,
even though heartbeat itself was quite limited. In
particular, the original heartbeat API was incapable of
supporting a sophisticated cluster management infra−
structure, so that until the new API was added, it was
impossible to go beyond two nodes in the cluster.
Now that this API is available, it is possible to write a
better cluster management services. Now, heartbeat’ s
past success can now serve as a springboard for future
enhancements and greater usefulness rather than serv−
ing as a source of criticism.

Is heartbeat misnamed?
Because of the fact that it treats providing heartbeat

services as a subcase of cluster communications, some
have said that heartbeat is misnamed. It is not simply
a heartbeat mechanism, but is best thought of as a ro−
bust low−level cluster communications mechanism
which provides notification when nodes join and leave
the communication channel. In this sense, the heart−
beat could perhaps even be thought of as a side−effect
of the reliable communications protocol.

Conclusion

Heartbeat’ s technique of providing heartbeats as an
integral part of a cluster communications channel has
proven straightforward and to implement and main−
tain. its use of ASCII message formats has proven
quite flexible, and added to the ease of debugging. The
addition of an API is pushing it into a new stage of
growth and usefulness in roles where it provides only
cluster communication and membership services. This
is expected to make it more useful than ever, and al−
low many different applications and cluster
management functions to interface with it.

Acknowledgments

Thanks to the members of the Linux−HA and linux−
ha−dev mailing lists who have used and critiqued and
questioned aspects of heartbeat. In this regard, the
author offers special thanks to Jerome Etienne. In
many ways, Jerome inspired this paper by persistently
asking questions about heartbeat, its design decisions
and questioning their wisdom. Without Jerome’s per−
sistence and energy, this paper would likely not have
been written. Additionally, Jerome commented on
extensively on several drafts of this document. The
following people also provided useful comments on
drafts of this document which improved it considera−
bly: Peter Badovinatz, Simon ("horms") Horman,
Neal McBurnett, John Schmaus and Stephen Tweedie.
The author would also like to thank Neal McBurnett of
AVAYA (formerly Bell Labs) for his help in designing
the authentication scheme used by heartbeat. Addi−
tionally, many, many people have contributed to
heartbeat, by writing code for it, or testing it, or pro−
viding documentation for it. Without them, heartbeat
itself would not be nearly the program it is now.

To Learn More

The Linux−HA web site can be found at [Rob00].
Heartbeat can be downloaded (in source or RPM for−
mat) from the Linux−HA web site download page at:
http://linux−ha.org/download/. Information on sub−
scribing to the various Linux−HA mailing lists can be
found on the contact page at: http://linux−ha.org/con−
tact/. The Linux FailSafe project is described in detail
in [Vas00].

References

[Dan94] Danzig, P. B.: "Flow Control for
Limited Buffer Multicast", IEEE
Transactions on Software Engineer−
ing, Vol 20, No. 1, January 1994, pp.
1−12

[Milz99] Milz, Harald: "The Linux High
Availability HOWTO". http://meta−
lab.unc.edu/pub/linux/ALPHA/linux
−ha/High−Availability−
HOWTO.html

[Mar00] Martinez, D.: http://linux−
ha.org/screenshots.html

[Phi98] In Search of Clusters, by Gregory F.
Pfister, 2nd Edition 1998, Prentice
Hall PTR

.[Ram87] Ramakrishnan, S., Jain, B. N.: "A
Negative Acknowledgment with Pe−
riodic Polling Protocol for Multicast
over LANs". In: Proc. IEEE INFO−
COM ’87, March 1987, S. 502−511.

[Rob00] Robertson, A. L.,: "The High−
Availability Linux Project".
Http://linux−ha.org/

[Twe00] Tweedie, S. C.,: "Barrier Opera−
tions". http://linux−
ha.org/PhaseII/WhitePapers/sct/bar−
rier.txt

[Vas00] Vasa, M.,: "The Linux Fail Safe
Project". http://oss.sgi.com/proj−
ects/failsafe/

[Wei00] Weis, R., Geyer, W, Kuhmünch, C.,
"Architectures for Secure Multicast
Communication", In: Proc. SANE
2000 System Administration and
Networking Conference, May 22−25,
2000., pp. 63−91.

Final dummy Alan Robertson the last refer

